

Reprogramming of the ER α and ER α Target Gene Landscape Triggers Tamoxifen Resistance in Breast Cancer

Verena Thewes¹, Ronald Simon², Petra Schroeter¹, Magdalena Schlotter¹, Tobias Anzeneder³, Reinhard Büttner⁴, Vladimir Benes⁵, Guido Sauter², Barbara Burwinkel⁶, Robert I. Nicholson⁷, Hans-Peter Sinn⁸, Andreas Schneeweiss⁹, Ulrich Deuschle¹⁰, Marc Zapata¹, Stefanie Heck¹, and Peter Lichten¹

Abstract

Endocrine treatment regimens for breast cancer that target the estrogen receptor- α (ER α) are effective, but acquired resistance remains a limiting drawback. One mechanism of acquired resistance that has been hypothesized is functional substitution of the orphan receptor estrogen-related receptor- α (ERR α) for ER α . To examine this hypothesis, we analyzed ERR α and ER α in recurrent tamoxifen-resistant breast tumors and conducted a genome-wide target gene profiling analysis of MCF-7 breast cancer cell populations that were sensitive or resistant to tamoxifen treatment. This analysis uncovered a global redirection in the target genes controlled by ER α , ERR α , and their coactivator AIB1, defining a novel set of target genes in tamoxifen-resistant cells. Beyond differences in the ER α and ERR α target gene repertoires, both factors were engaged in

similar pathobiologic processes relevant to acquired resistance. Functional analyses confirmed a requirement for ERR α in tamoxifen- and fulvestrant-resistant MCF-7 cells, with pharmacologic inhibition of ERR α sufficient to partly restore sensitivity to antiestrogens. In clinical specimens ($n = 1041$), increased expression of ERR α was associated with enhanced proliferation and aggressive disease parameters, including increased levels of p53 in ER α -positive cases. In addition, increased ERR α expression was linked to reduced overall survival in independent tamoxifen-treated patient cohorts. Taken together, our results suggest that ER α and ERR α cooperate to promote endocrine resistance, and they provide a rationale for the exploration of ERR α as a candidate drug target to treat endocrine-resistant breast cancer. *Cancer Res*; 75(4); 720–31. ©2015 AACR.

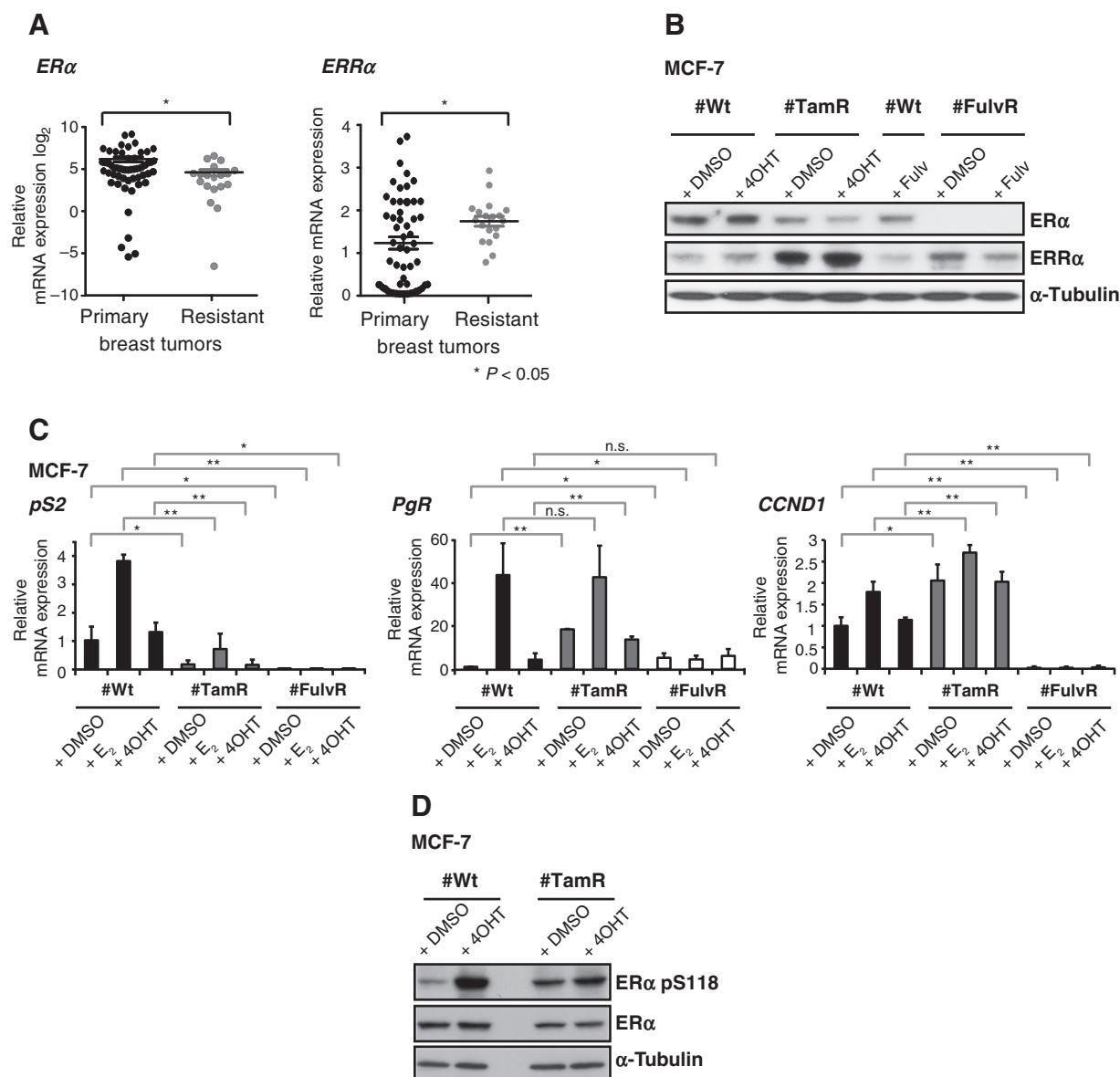
Introduction

The ligand-activated transcription factor ER α is a key driver of the breast cancer phenotype in around 70% of patients (1). Accordingly, endocrine treatment modalities targeting ER α , such as the selective estrogen receptor modulator (SERM) tamoxifen or downregulator (SERD) fulvestrant (Fulv; SERM) constitute the basis for therapeutic intervention in ER α -positive tumors (2). Fulvestrant as a pure ER α antagonist and tamoxifen as partial antagonist counteract the pro-proliferative and antiapoptotic

stimuli classically induced by estrogens (3). Beyond the widespread improvements by these treatment regimens, the frequent onset of antiestrogen resistance remains a major limitation (4), underlining the clinical need for alternative drug targets.

A compelling body of evidence suggests involvement of another nuclear hormone receptor, estrogen-related receptor- α (ERR α), in the pathogenesis of breast cancer. Increased ERR α expression was found in mammary tumors and correlated with an impaired disease-free and overall patient survival (5, 6). The pathophysiologic relevance of ERR α has been further demonstrated *in vivo*, as ERR α inhibition in xenograft systems reduces breast tumor growth, and in HER-2/neu-driven breast cancer mouse models, ERR α knockout delays tumor formation (7, 8). Despite the structural relationship, ER α and ERR α share only 33% homology in their ligand-binding domains, resulting in the insensitivity of ERR α to classical ER α ligands such as estrogen and tamoxifen (9–11). Because of the lack of known natural ligands, ERR α is classified as orphan receptor, whereas its transcriptional activity can be abrogated by small-molecule inhibitors (i.e., XCT790; ref. 12).

ERR α and ER α possess a high sequence homology in their central DNA-binding domains (68%), and therefore each recognize the others cognate-binding motif (9, 13). Identification of a subset of common target genes (e.g., *pS2*; refs. 14, 15), raised the hypothesis that ERR α bypasses the requirement for ER α in endocrine-resistant breast cancers and fuels resistance. This concept has been corroborated by the interplay of ERR α and known determinants of antiestrogen resistance such as HER-2/neu and the coactivator AIB1 (6, 8, 16). As a versatile nuclear hormone


¹Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany. ²Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ³Foundation PATH—Patients' Tumor Bank of Hope, Munich, Germany. ⁴Institute of Pathology, University Hospital Cologne, Cologne, Germany. ⁵Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. ⁶Molecular Biology of Breast Cancer, University Women's Clinic, Heidelberg, Germany. ⁷Breast Cancer Group, Cardiff University, Cardiff, United Kingdom. ⁸Institute of Pathology, University of Heidelberg, Heidelberg, Germany. ⁹Gynecologic Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany. ¹⁰Phenex Pharmaceuticals AG, Heidelberg, Germany.

Note: Supplementary data for this article are available at Cancer Research Online (<http://cancerres.aacrjournals.org/>).

Corresponding Author: Peter Lichten, Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany. Phone: 0049-6221-424619; Fax: 0049-6221-424639; E-mail: peter.lichter@dkfz.de

doi: 10.1158/0008-5472.CAN-14-0652

©2015 American Association for Cancer Research.

Figure 1.

Characterization of ER α and ERR α in endocrine-resistant breast tumors and MCF-7 cells. A, relative ER α and ERR α mRNA expression. qRT-PCR revealed decreased ER α (*, $P = 0.0169$), but maintenance of ERR α expression (*, $P = 0.0477$) in tamoxifen-resistant breast carcinomas. RNA was available from 55 primary untreated (tumor set I) and 19 of 20 recurrent tamoxifen-resistant carcinomas (tumor set II). B, steroid-depleted MCF-7 #Wt, #TamR, and #FulvR cells were exposed to DMSO, 4OHT (1 μ mol/L), or fulvestrant (100 nmol/L) for 1 hour and subjected to immunoblotting. C, canonical ER α signaling. Hormone-deprived MCF-7 cells were exposed to DMSO, E $_2$ (10 nmol/L), or 4OHT (1 μ mol/L) for 24 hours, followed by pS2, PgR, and CCND1 measurement by qRT-PCR. *, $P < 0.05$; **, $P < 0.01$. n.s., nonsignificant. D, ER α S118 phosphorylation in MCF-7 #Wt and #TamR cells. Steroid-depleted cells were treated for 20 minutes with DMSO or 4OHT (1 μ mol/L), respectively, and subjected to immunoblotting.

receptor regulator, AIB1 not only regulates ER α 's transcriptional activity (17), but likely dictates ERR α activity by functioning as substitute "protein ligand" (6). However, its influence on tamoxifen resistance is still controversial.

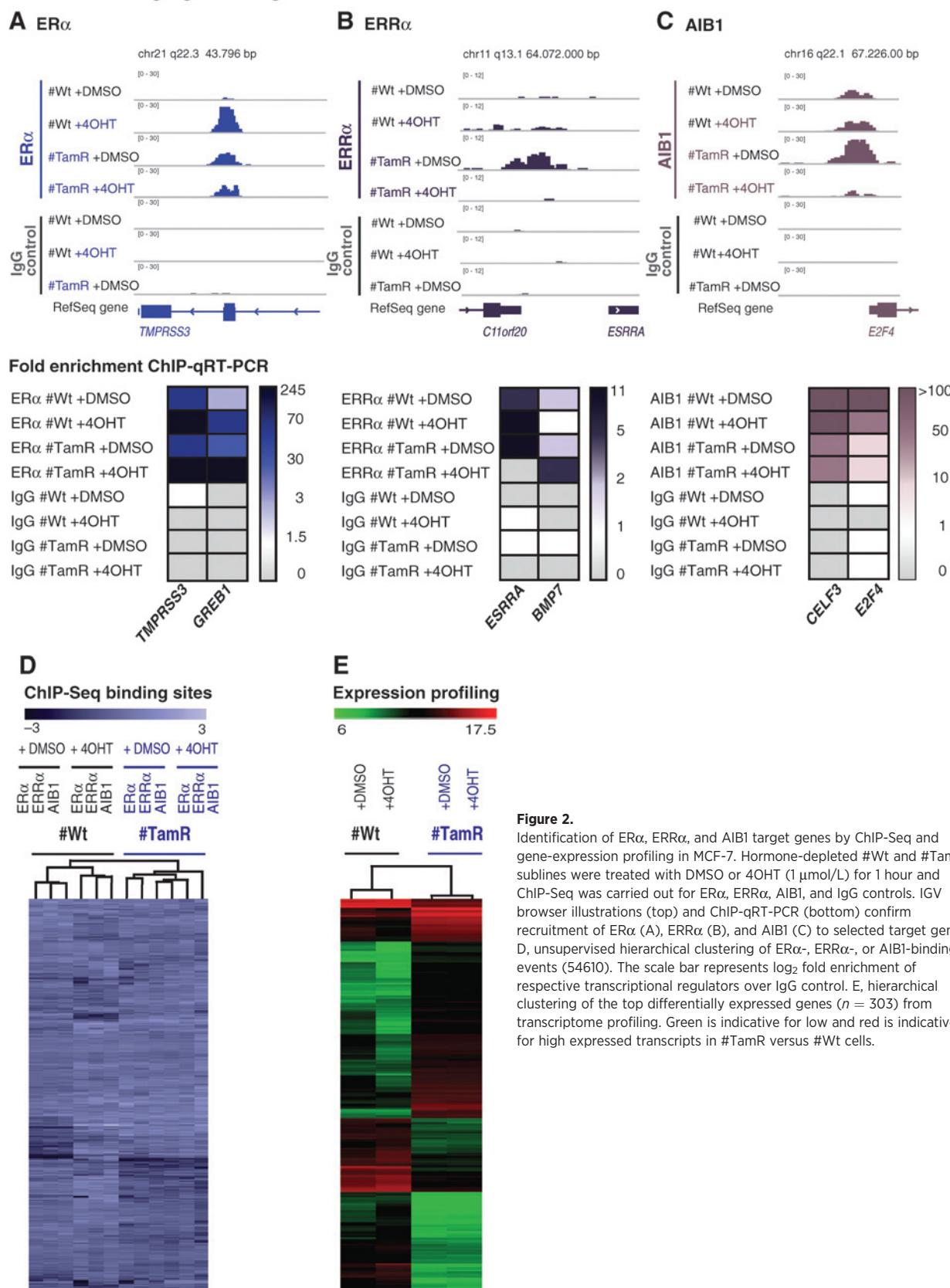

The substantial cross-talk between ER α and ERR α emphasizes the need to elucidate their concerted action in endocrine-resistant breast carcinomas. Beyond recent reports that focused on tamoxifen-induced ER α cistromes (18–20), no comprehensive map of ER α -, ERR α -, and AIB1-binding events in relation to gene expression had so far been described in the tamoxifen-resistant setting.

Table 1. ER α and PR in recurrent tamoxifen-treated breast tumors

ER α /PR expression	Number of tumors (n = 20)	ER α ⁺ tumors (%)	Total (%)
ER α ⁺ /PR ⁺	13	76.5	65
ER α ⁺ /PR ⁻	4	23.5	20
ER α ⁻ /PR ⁻	3	NA	15

NOTE: ER α and PR receptor status was evaluated by routine pathologic IHC (tumor set II). Depicted are absolute numbers, percentages of ER α -positive breast tumors, and the total sum of ER α -positive and -negative tumors. Abbreviation: NA, not available.

Enrichment at target genes vs. IgG control

Figure 2. Identification of *ER α* , *ERR α* , and *AIB1* target genes by ChIP-Seq and gene-expression profiling in MCF-7. Hormone-depleted #Wt and #TamR sublines were treated with DMSO or 4OHT (1 μ mol/L) for 1 hour and ChIP-Seq was carried out for *ER α* , *ERR α* , *AIB1*, and IgG controls. IGV browser illustrations (top) and ChIP-qRT-PCR (bottom) confirm recruitment of *ER α* (A), *ERR α* (B), and *AIB1* (C) to selected target genes. D, unsupervised hierarchical clustering of *ER α* -, *ERR α* -, or *AIB1*-binding events (54610). The scale bar represents log₂ fold enrichment of respective transcriptional regulators over IgG control. E, hierarchical clustering of the top differentially expressed genes (n = 303) from transcriptome profiling. Green is indicative for low and red is indicative for high expressed transcripts in #TamR versus #Wt cells.

Thus, we analyzed ERR α , ER α , and AIB1 in recurrent tamoxifen-resistant breast cancers and conducted a genome-wide target gene profiling in tamoxifen-resistant and -sensitive MCF-7 cell culture models. Furthermore, we performed functional analyses of ERR α 's role in treatment sensitivity and assessed its predictive impact on patient's response toward endocrine therapy.

Materials and Methods

Fresh-frozen, formalin-fixed paraffin-embedded breast cancer specimens and patient characteristics

Fresh-frozen primary pretreatment (tumor set I) and secondary locoregional tamoxifen-resistant (tumor set II) breast cancer specimens were collected between 2001 and 2012 at the University Woman's Hospital Heidelberg (Germany) or obtained from the PATH tumor bank (Munich, Germany; ref. 21). All patients from tumor set II received tamoxifen therapy, and the relapse occurred within the time of or upon completion of treatment. All patients signed informed consents, and the study was approved by the Ethical Committee of the Universities of Heidelberg or Bonn, respectively. Tumor set III, defined as ER α ⁺ (IRS-score ≥ 3) has been described before (22) and comprises like tumor set IV and the publicly available dataset GSE9893, used for survival analyses, pretreatment primary tumors. These patients received adjuvant tamoxifen therapy (22, 23) with a standard duration of 5 years. The median follow-up time was 58 (tumor set IV) and 65.9 (GSE9893) months. Additional patient characteristics are described in Supplementary Table S1.

Cell lines

Antiestrogen-sensitive (#Wt) and -resistant (#TamR and #FulvR) MCF-7 cells were from R.I. Nicholson (Cardiff University, Cardiff, UK) and derived as previously described (24, 25). Cell line authentication was assessed using short tandem repeat profiling. #Wt cells were routinely grown under "maintenance" culture conditions in RPMI containing 5% fetal calf serum, 100 U/mL penicillin, 100 μ g/mL streptomycin, 2.5 μ g/mL fungizone, and 4 mmol/L glutamine. #TamR and #FulvR cells were cultured in "experimental" medium [phenol-red-free RPMI, 5% charcoal-stripped, steroid-depleted fetal calf serum, antibiotics, fungizone, and glutamine as indicated above] and supplemented with 100 nmol/L 4-hydroxytamoxifen (4OHT) or fulvestrant. If not otherwise specified, #Wt cells were cultured under "experimental" conditions and 4OHT and fulvestrant were withdrawn from #TamR and #FulvR cells 72 hours before experiments.

Western blot analysis, RNA isolation, quantitative real-time PCR, and microarray gene-expression profiling

Western blot analysis, RNA isolation, quantitative real-time PCR (qRT-PCR), and microarray gene-expression profiling (Agilent 4 \times 44 k) were performed as described previously (6), and outlined in the supplements with antibodies and primers depicted in Supplementary Tables S2 and S3.

Chromatin immunoprecipitation and ChIP-Seq

Hormone-depleted MCF-7 cells were treated with 4OHT (1 μ mol/L) or DMSO for 1 hour. Chromatin immunoprecipitation (ChIP) was performed using the Transcription-Factor-ChIP-Kit (Diagenode) with minor modifications and library preparation according to the NEBNext-ChIP-Seq Sample-Prep Master-Mix Set 1.

Enrichment of biologic processes

Network discovery of enriched target genes in #TamR (vs. #Wt) was computed with Ingenuity Systems IPA (www.ingenuity.com).

Cell viability assays

Cells were treated every 2 days with 4OHT (100 nmol/L), fulvestrant (100 nmol/L), and XCT790 (1 μ mol/L) and viability was monitored with the CellTiter-96 Aqueous-Non-Radioactive Cell Proliferation Assay (Promega).

Lentiviral knockdown and Click-iT-Edu cell proliferation assays

Production of lentiviral particles targeting ERR α (TRCN-0000022179 and TRCN0000022181; Sigma-Aldrich) and a non-targeting control shRNA (SHC002) was conducted as described previously (26). Proliferation was assessed by the Click-iT-EdU Cell Proliferation Kit (Life Technologies).

Immunohistochemistry on tissue microarrays

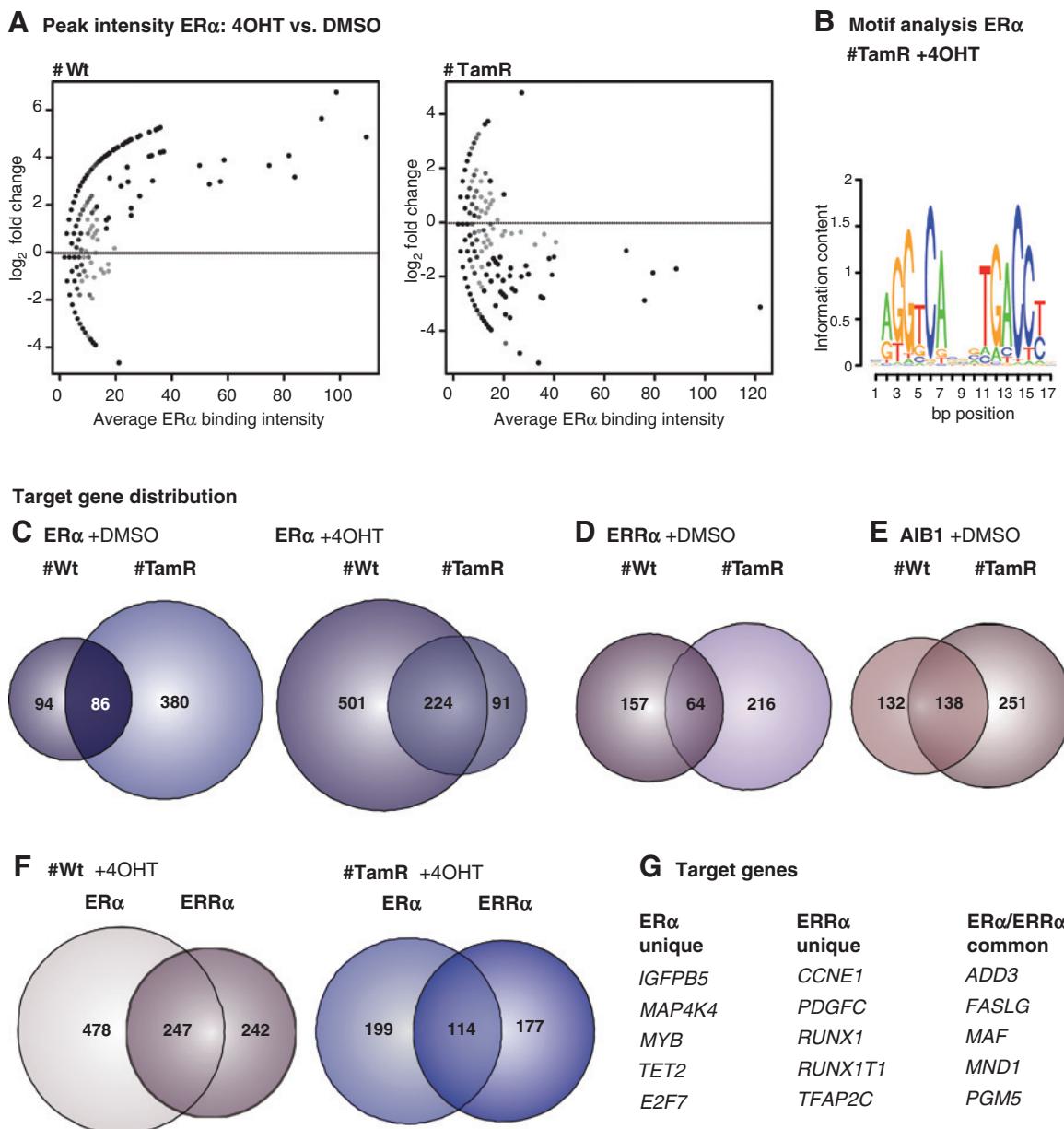
The tissue microarray (TMA) was comprised of primary formalin-fixed paraffin-embedded (FFPE) breast tumor samples (tumor set III and IV). Upon ERR α staining (Abcam), data were analyzed as described before (22).

Kaplan-Meier survival analyses

ERR α mRNA expression values were retrieved from a tamoxifen-treated primary breast cancer gene-expression profiling meta-set deposited at NCBI-GEO database (GSE9893; ref. 23). ERR α protein expression was assessed by IHC in tumor set IV.

Statistical analyses and bioinformatic computation

Statistical analyses and bioinformatic computation were performed as outlined in the supplements. *P* values are listed in Supplementary Table S4.


Additional information is provided in the Supplementary Materials and Methods.

Results

ER α and ERR α in recurrent tamoxifen-resistant breast carcinomas and MCF-7-based breast cancer models of endocrine resistance

ER α and ERR α mRNA expression was analyzed in a cohort of 19 relapsed breast tumors, which emerged during or after completion of long-term adjuvant tamoxifen treatment (tumor set II, Supplementary Table S1). Comparison with primary treatment-naïve breast carcinomas (tumor set I) revealed a minor downregulation of ER α (*, *P* = 0.0169), although most tumors remained ER α positive, and slight upregulation of ERR α (*, *P* = 0.0477) in tamoxifen-resistant cases (Fig. 1A).

To assess the suitability of *in vitro* model systems for functional analyses, ER α and ERR α expression was studied in a tamoxifen- (#TamR) and a fulvestrant (#FulvR)-resistant MCF-7 subline. In comparison with the corresponding antiestrogen-sensitive parental strain (#Wt), #TamR and #FulvR cells were characterized by a slight and complete reduction in ER α expression, respectively, which is in good agreement with published data (Fig. 1B; refs. 25, 27), regardless of short-term treatment with the respective antiestrogens. Furthermore, an increase in ERR α was detected in the #TamR subline. Hence, the cell lines can be considered as eligible models to investigate the impact of ER α and ERR α on endocrine resistance.

Figure 3.

ChIP-Seq and integrated gene-expression profiling unravels discrete target gene landscapes for ER α , ERR α , and AIB1 between tamoxifen-sensitive and -resistant MCF-7 cells. A, mean average plots (MA-plots) of ER α -binding events in MCF-7 #Wt (left) and #TamR (right) cells upon tamoxifen exposure. The average peak intensity is depicted on the x-axis and the log₂ fold ratio of peak intensities between 4OHT and DMSO administration on the y-axis. B, weight matrix of the overrepresented ER α consensus-binding motif (ERE) in 4OHT-treated #TamR cells. C–E, Venn diagrams of ER α (DMSO: left, 4OHT right), ERR α - and AIB1-binding sites (intensity cutoff ≥ 10) associated with gene-expression changes ($\geq \pm 1$ log₂ fold change). F, crossover between ER α and ERR α target genes identified by ChIP-Seq and transcriptome profiling in #Wt and #TamR MCF-7 sublines upon tamoxifen administration. G, selected target genes for ER α and ERR α exclusively found in #TamR.

In addition, cell proliferation assays confirmed the treatment sensitivity of #Wt cells toward 4OHT and fulvestrant (Supplementary Fig. S1). Whereas #TamR cells even displayed a slightly increased proliferation rate in the presence of tamoxifen, but a decrease upon fulvestrant treatment, #FulvR cells displayed cross-resistance to both antiestrogens.

In the following, we elucidated whether resistant cells retain canonical ER α signaling. For this purpose, MCF-7 #Wt, #TamR,

and #FulvR cells were treated with estradiol (E₂) or 4OHT, and the relative mRNA expression of the established ER α target genes *pS2*, *PgR*, and *CCND1* (28) was measured using qRT-PCR (Fig. 1C). As expected, supplementation of the cell culture media with estradiol resulted in a marked increase in target gene expression in #Wt cells, a feature not observed upon administration of the partial antagonist tamoxifen. In contrast, #TamR cells displayed a highly variable response pattern. Whereas the estradiol-dependent *pS2*

levels (left) were lower in #TamR cells, estradiol-induced *PgR* (middle) was expressed to a similar extent as in the #Wt subline. Irrespective of the presence of estradiol or tamoxifen, *CCND1* (right) exhibited high baseline expression levels in #TamR, but in accordance with the other target genes was lost in ER α -negative fulvestrant-resistant MCF-7 cells. These findings indicate a disengaged target gene regulation in tamoxifen-resistant cells at selected promoters. Moreover, we delineated the phosphorylation status of ER α S118 as a classical activation marker in ER α -positive #Wt and #TamR cells (Fig. 1D). In #Wt cells, phosphorylation was induced in a ligand-dependent manner, whereas high baseline levels of phosphorylated ER α S118 were present even in untreated #TamR cells.

Furthermore, we investigated ER α 's ability to induce target gene expression in refractory tamoxifen-resistant breast tumors (tumor set II). The progesterone receptor (PR) serves as a reliable surrogate marker to assess ER α functionality in FFPE patient tumor material (29). Analyses of the complete set ($n = 20$) of immunohistochemically stained specimens revealed that 76.5% of ER α -positive tumors coexpressed PR, whereas the remaining 23.5% lacked notable PR expression (Table 1). Correspondingly, ER α retains its capability for canonical downstream signaling in the majority of tamoxifen-resistant tumors. In combination with the sensitivity of tamoxifen-resistant cells toward ER α loss (as assessed by the SERM fulvestrant; Supplementary Fig. S1B), the modified ER α activity on selected target genes *in vitro* and the slightly increased ER α expression in tamoxifen-resistant cells suggest that global adaptions in the target gene regulation of the nuclear receptors might contribute to endocrine resistance.

Genome-wide landscape of ER α -, ER α -, and AIB1-binding sites in tamoxifen-resistant MCF-7 cells

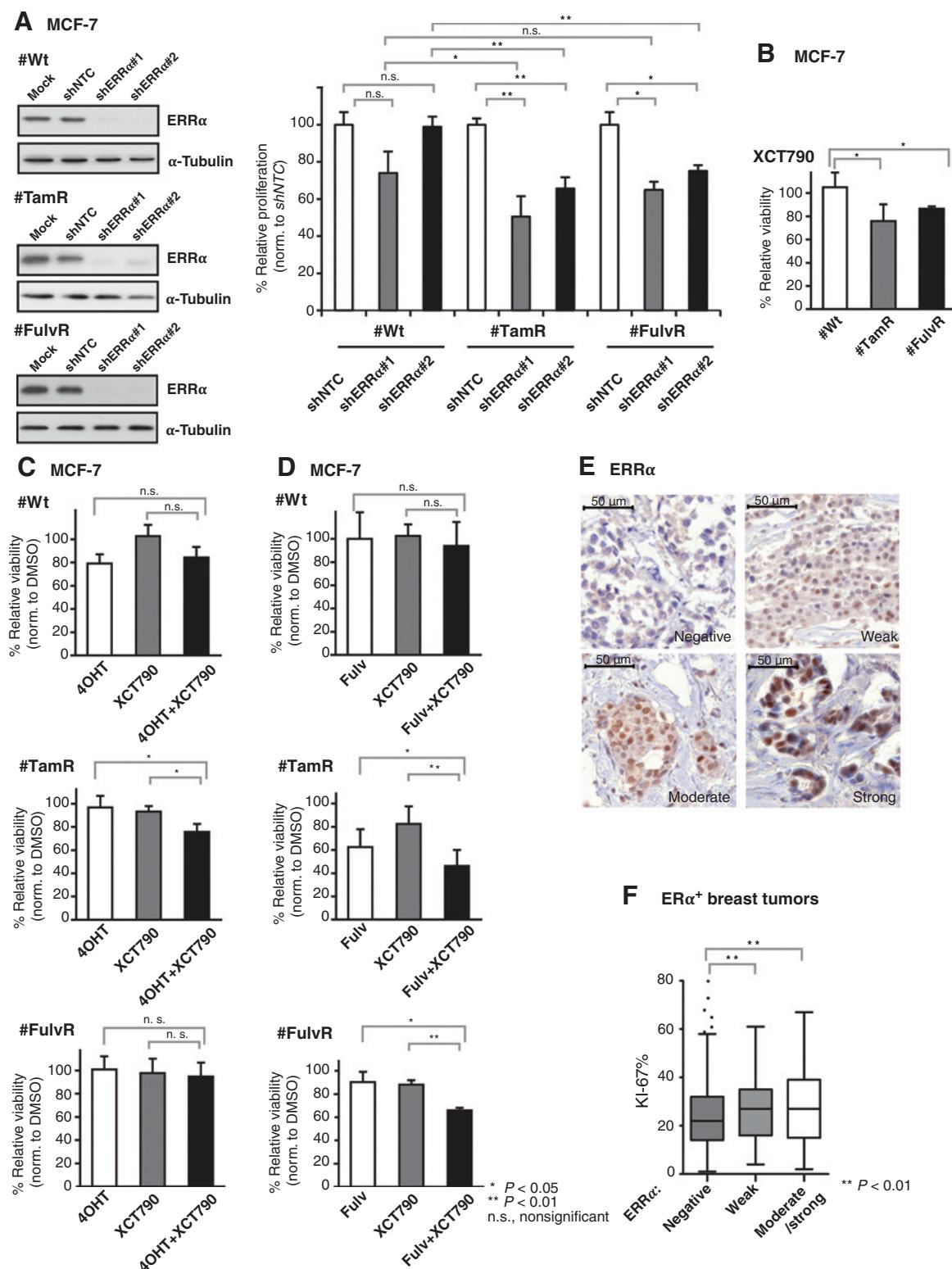
To map ER α - and ER α -binding events in the endocrine-resistant setting across the genome, we selected the ER α - and ER α -expressing MCF-7 #Wt and #TamR cells and subjected them to ChIP sequencing (ChIP-Seq) after tamoxifen or vehicle (DMSO) treatment. In addition, AIB1 was included into the experimental setup to evaluate its binding pattern in resistant cells. The ChIP reaction was monitored by the detection of precipitated protein-DNA complexes using Western blot analysis (Supplementary Fig. S2A). The ChIP-Seq approach identified a vast enrichment of ER α upon tamoxifen treatment on classical target genes such as *TMRSS3* and *GREB1* (18) in #Wt cells, underlining the robustness of the method (Fig. 2A top, for the complete panel Supplementary Fig. S2B). Compared with the ER α frequency distribution, ER α and AIB1 predominantly showed lower but broader peaks (Fig. 2B and C top; Supplementary Fig. S2C–S2D). The ChIP-Seq data were further validated by ChIP-qRT-PCR confirming the recruitment of all factors to known and newly identified cognate-binding elements (ER α : *TMRSS3*, *GREB1*; ER α : *ESRRA*, *BMP7*; AIB1: *E2F4*, *CELF3*; Fig. 2A–C, bottom; Supplementary Fig. S3).

Different ER α , ER α , and AIB1 target gene repertoires between tamoxifen-sensitive and -resistant breast cancer cells

Hierarchical clustering of all ChIP-Seq peaks, occupied by either ER α , ER α , or AIB1 under any treatment condition (Fig. 2D), demonstrated clearly binding clusters specific for MCF-7 #Wt or #TamR cells. Because binding of a transcription factor not necessarily implies a biologic outcome on transcriptional level, gene-expression profiling was conducted under the same exper-

imental conditions. Hierarchical clustering of the top differentially regulated transcripts again revealed distinct transcriptional networks between #Wt and #TamR cells (Fig. 2E; Supplementary Table S5). These findings are in accordance with the SAM analyses (FDR < 0.01), which unraveled a large proportion of significantly upregulated (1,060) and downregulated (1,429) transcripts in #TamR compared with #Wt cells.

Subsequently, we interrogated the target gene repertoires of ER α , ER α , and AIB1 in detail (Fig. 3; Supplementary Table S6) and dissected the global ER α chromatin occupancy in response to tamoxifen. Tamoxifen facilitated a rapid recruitment of ER α to DNA interaction sites in #Wt cells (Fig. 3A, left). Hitherto unexpected was the inverse recruitment pattern in the #TamR subline, as we observed reduced chromatin binding of the ER α /tamoxifen complex in comparison with the nonligand-bound receptor (Fig. 3A, right). We further applied consensus-binding motif analyses to assess whether ER α still executes genomic signaling in tamoxifen-treated #TamR cells. The classical estrogen-response element (ERE; ref. 18) emerged as the most prevalent ER α DNA interaction site, approving maintenance of canonical genomic signaling in tamoxifen-resistant cells (Fig. 3B).


To identify functionally relevant target genes, high-affinity-binding events were combined and set in relation to expression changes. Beyond a minor proportion of common ER α target genes in untreated cells [DMSO: $n = 86$ (15.4%); Fig. 3C, left] and a slight upregulation upon tamoxifen administration [4OHT: $n = 224$ (27.5%); Fig. 3C, right], the majority remained unique in #Wt and #TamR cells. Closer examination of the total number of ER α target genes in #Wt (DMSO, $n = 180$; 4OHT, $n = 725$) and #TamR (DMSO, 466; 4OHT, 315) sublines further uncovered ligand-independent binding of ER α in tamoxifen-resistant cells in line with previous data (19).

Substantial differences were also observed for the ER α and AIB1 target gene repertoires in tamoxifen-sensitive compared with -resistant sublines. Only 14.7% of ER α target genes were commonly regulated in #Wt and #TamR cells (Fig. 3D), whereas a higher degree of overlap was observed for AIB1 target genes (26.5%, Fig. 3E). Correspondingly, the majority of targets were differentially controlled between #Wt (total target genes: ER α , $n = 221$; AIB1, $n = 270$) and #TamR cells (total target genes: ER α , $n = 280$; AIB1, $n = 389$). This lack of cross-binding reactivity was maintained independent of the applied tamoxifen treatment (data not shown). Thus, we uncovered a global reprogramming of ER α , ER α , and AIB1 target regulation in tamoxifen-resistant breast cancer cells.

We further investigated whether AIB1 specifically colocalizes to ER α or ER α target genes in tamoxifen-resistant cells. However, we did not observe marked quantitative alterations with functional relevance in the overlapping target gene spectra (Supplementary Fig. S4A–S4B). Although we did not notice pronounced AIB1 expression changes in tamoxifen-resistant MCF-7 cells, we surprisingly detected a significant downregulation of *AIB1* mRNA in relapsed tamoxifen-resistant breast cancer specimens (Supplementary Fig. S4C–S4D). As our data did not provide an indication for an involvement of AIB1 in the development of resistance, we focused on the impact of ER α and ER α in subsequent analyses.

ER α and ER α functionally cooperate to promote endocrine resistance beyond their distinct target cistromes

To examine, whether ER α and ER α regulate similar or different target spectra in tamoxifen-resistant cells, the overlap of these

Figure 4.

ERR α inhibition reduces proliferation in endocrine-resistant MCF-7 cells. A, lentiviral knockdown of ERR α in MCF-7 #Wt in "maintenance medium" and #TamR and #FulvR cells in steroid-depleted medium with two independent shRNAs (shERR α #1 and shERR α #2). Western blotting was done to ascertain ERR α protein knockdown (left). Cell proliferation measured by Click-iT-EdU was adjusted to nontarget shRNA control (shNTC, right). (Continued on the following page.)

spectra was determined. Surprisingly, despite a small subset of commonly regulated genes, striking differences were observed for their target cistromes in both tamoxifen-sensitive and -resistant MCF-7 cells (Fig. 3F; Supplementary Fig. S4E and Supplementary Table S7). Comparison of the relative percentage of shared target genes in #Wt (DMSO, 26.5%; 4OHT, 25.5%) and #TamR cells (DMSO, 15%; 4OHT, 23.3%) unraveled an even smaller proportion of common target genes in resistant cells.

To elucidate the functional relevance of deregulated target genes, which were specifically enriched in resistant cells, deregulated networks were inferred using Ingenuity (Supplementary Table S8). ER α target genes were associated with cellular processes such as proliferation and cell death (e.g., MAP4K4, MYB, and TET2, Fig. 3G). Although ERR α induced a different set of downstream effectors (e.g., CCNE1, PDGFC, and RUNX1), these were associated with similar pathophysiologic processes (e.g., proliferation), suggesting a functional redundancy between ER α and ERR α . Furthermore, we identified common ER α and ERR α target genes, which have been already linked with different forms of resistance in other tumor types (e.g., ADD3; ref. 30).

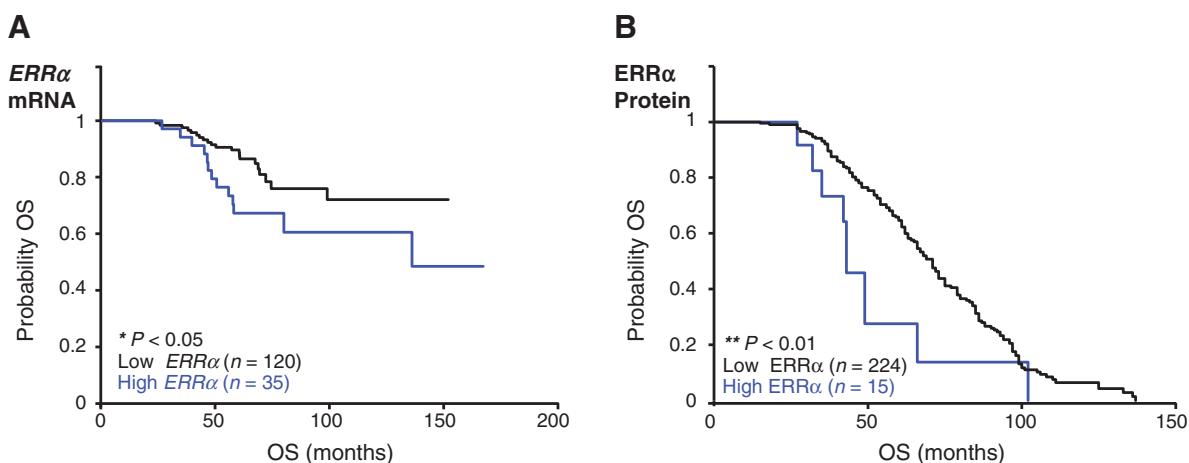
The potential of ER α to promote endocrine-resistant breast cancer proliferation and to predict patient outcome has been demonstrated earlier (31, 32). Correspondingly, we set out to assess the impact of ERR α on the proliferation behavior in MCF-7 #Wt, #TamR, and #FulvR cells, as another antiestrogen-resistant model, using lentiviral-mediated shRNA knockdown. Western blot analyses confirmed effective silencing of ERR α expression and cell proliferation assays detected a significant reduction in proliferation of #TamR and #FulvR cells upon ERR α knockdown with two independent shRNAs that was not evident in #Wt cells (Fig. 4A). Remarkably, #TamR cells were stronger affected from ERR α loss than #Wt cells, suggestive for a higher requirement of resistant cells on functional ERR α signaling. Comparable effects of the ERR α knockdown on proliferation were achieved in the presence of the respective antiestrogens (Supplementary Fig. S5), indicating that the contribution of ERR α to overcome the tamoxifen- and fulvestrant-induced growth inhibition is not tightly linked to the ER α function.

The transactivation properties of ERR α can be abolished with the small-molecule inhibitor XCT790 (12). Administration of XCT790 impaired the viability of MCF-7 #TamR and #FulvR cells to a stronger extent than #Wt cells as measured by MTS assays (Fig. 4B).

Next, we interfered simultaneously with the function of ERR α and ER α (Fig. 4C). Dual targeting of ER α and ERR α resulted in a significant reduction of cell viability in #TamR cells. This finding was confirmed in cells cultured in the presence of fulvestrant instead of tamoxifen (Fig. 4D). Similar effects were further observed in #FulvR cells (Fig. 4C and D, bottom). In accordance with the established cross-resistance of fulvestrant-resistant breast cancers toward tamoxifen (33), #FulvR cells were unresponsive

toward tamoxifen, but were partly resensitized toward fulvestrant upon simultaneous inhibition of ERR α .

As ERR α sustained proliferation *in vitro*, we investigated its impact on cell proliferation in breast cancer specimens. ERR α and Ki-67 protein expression was determined by immunohistochemical staining of a TMA covering 1,041 informative ER α -positive primary breast carcinomas (Fig. 4E and for extended panel Supplementary Fig. S6, Supplementary Table S1, tumor set III). ERR α was primarily located in the nucleus, although we also observed weak cytoplasmic staining. We here considered solely nuclear staining in line with our focus on the transcriptional activities of ERR α . In good agreement with the *in vitro* findings, strong nuclear ERR α expression, found in approximately 13% to 20% of tumors, associated with a higher proliferation index (**, $P = 0.0033$, Fig. 4F). Within the same cohort, we observed a positive dependency between ERR α expression and increased p53 expression (**, $P = 0.0042$) and the association with AIB1 (**, $P < 0.0001$, Supplementary Table S9), which has been previously reported by our group in another patient cohort (6).


ERR α associates with a shortened overall survival in endocrine-treated patients with breast cancer

As the *in vitro* findings suggested an involvement of ERR α in the pathogenesis of tamoxifen resistance, we examined the potential of ERR α expression to predict patients' outcome upon tamoxifen treatment. ERR α mRNA expression data were retrieved from a gene-expression profiling dataset (GSE9893; ref. 23) of adjuvant tamoxifen-treated primary breast tumors. Subsequent Kaplan-Meier estimates revealed a significantly reduced overall survival (OS; *, $P = 0.02905$, Fig. 5A) for patients with high ERR α -expressing tumors. Likewise, the predictive power of ERR α on protein level was analyzed by IHC. The above-mentioned TMA contains a subset of patients with a tamoxifen monotherapy treatment history (tumor set IV). Analysis of this patient cohort again uncovered a correlation between ERR α expression and a shortened OS (**, $P = 0.00974$, Fig. 5B).

The impact of standard clinicopathologic parameters on survival was evaluated in multivariate analyses for both patient cohorts (Table 2). Cox analyses revealed the following independent predictors for an early recurrence upon endocrine therapy: ERR α [HR, 3.30; *, $P = 0.0118$ (GSE9893) and HR, 2.72; **, $P = 0.007$ (tumor set IV)], grade [HR, 2.74; **, $P = 0.0047$ (GSE9893)] and PR [HR, 0.39; *, $P = 0.0442$ (GSE9893)]. ERR α was the only factor identified in both patient cohorts and also upon stratification to grade and PR in the GSE9893 dataset, ERR α was still the only significant factor (HR, 3.72; **, $P = 0.0095$, Supplementary Table S10).

Altogether, these data emphasize that high ERR α expression in breast tumors correlates with a diminished response toward endocrine therapy underlining the contribution of ERR α to the acquisition of endocrine resistance.

(Continued.) B–D, MCF-7 #Wt, #TamR, and #FulvR cells were exposed to inhibitors against ER α (100 nmol/L 4OHT or fulvestrant) and/or ERR α (1 μ mol/L XCT790). Cell viability under steroid-depleted conditions was monitored by MTS assays (d6). B, ERR α inhibition by XCT790. Dual inhibition of ER α and ERR α with 4OHT (C) or fulvestrant (D) and XCT790. Bar charts indicate the mean \pm SD of at least three independent experiments. E, examples of immunohistochemical ERR α stainings in ER α -positive breast carcinomas on a TMA at a $\times 400$ original magnification. F, immunohistochemical evaluation of ERR α and Ki-67 expression in ER α -positive breast carcinomas ($n = 1,041$; **, $P = 0.0033$) on the TMA. ERR α expression was stratified according to negative ($n = 728$), weak ($n = 242$), and moderate/strong ($n = 71$) expression. Ki-67 is displayed as a percentage of positive cells.

Figure 5.

ERR α correlates with an adverse outcome in tamoxifen-treated patients with breast cancer. Kaplan-Meier survival curves to relate ERR α expression with OS in primary adjuvant tamoxifen-treated primary tumors. A, ERR α mRNA expression data were dissected from the microarray dataset GSE9893 (*, $P = 0.02905$; ref. 23). B, ERR α expression based on nuclear immunostaining of ERR α on the TMA (tumor set IV, $n = 239$; **, $P = 0.00974$).

Discussion

Integrated molecular analyses uncovered a multitude of mechanisms underlying antiestrogen resistance, which initially appeared as attractive targets for therapeutic intervention in breast cancer (4). However, in line with the anticipated heterogeneity of drug-tolerant cell populations, the monotherapeutic efficacy of most of them yielded disappointing results in the clinic, highlighting the need for alternative drug targets and combined treatment approaches. ERR α has been identified as a prognostic biomarker for an unfavorable patient outcome in mammary carcinomas (5, 13, 34), underlining a pathophysiologic relevance of ERR α in the etiology of breast cancer.

Table 2. Effects of covariates on survival in tamoxifen-treated primary breast tumors

	Coefficient (95% CI)	HR	P^a
<i>ERRα mRNA^b</i>			
pT stage	-0.0401 (0.4364)	0.9607	0.9268
pN stage	0.7179 (0.5586)	2.0501	0.1987
Grade	1.0085 (0.3566)	2.7415	0.0047
Histologic subtype	-6.4472 (21.6028)	0.0016	0.7654
ER α	0.2072 (1.0837)	1.2302	0.8484
PR	-0.9323 (0.4634)	0.3936	0.0442
ERR α	1.1951 (0.4746)	3.3039	0.0118^c
<i>ERRα protein^d</i>			
pT stage	-0.055835 (0.11429)	0.946	0.630
pN stage	-0.436730 (0.16969)	0.646	0.010
Grade	-0.093228 (0.11397)	0.911	0.410
Age	0.002032 (0.00893)	1.002	0.820
HER-2	0.020006 (0.12145)	1.020	0.870
p53	-0.097467 (0.09137)	0.907	0.290
ERR α	0.999811 (0.37229)	2.718	0.007
AIB1	-0.000672 (0.23996)	0.999	1.000

Abbreviation: CI, confidence interval.

^a P values <0.05 were considered as significant and are indicated in bold.

^bClinical data were retrieved from a publicly available dataset (GSE9893). All cases used for Kaplan-Meier survival analyses were included into multivariate analysis.

^cERR α was still a significant ($P = 0.0095$) independent predictor upon stratification to grade and PR status (Supplementary Table S10).

^dFrom tumor set IV (total, $n = 239$), 47 cases were not included into multivariate analysis due to missing clinical variables.

Nevertheless, the role of the interplay between ER α and ER α in endocrine resistance has been basically undetermined. Our combined *in vitro* and tumor data suggest that ER α and ER α adopt a novel set of target genes in tamoxifen-resistant cells, and that they functionally cooperate to promote endocrine resistance, despite the apparent existence of specific target gene spectra. We further provide evidence that ER α is a predictor of reduced patient survival upon tamoxifen therapy, and that its inhibition leads to a reduced proliferation in endocrine-resistant cells.

Because of the limited availability of respective patient material, only few studies so far included tamoxifen-resistant recurrent tumors. Apart from the overall diminished ER α expression, which is in good agreement with earlier reports (35, 36), three quarters of tamoxifen-resistant tumors retained the capacity for canonical ER α signaling as assessed by the surrogate marker PR. The target gene-specific differential ER α -driven transcriptional response found in tamoxifen-resistant MCF-7 cells, and the selective regulation of target genes, which are linked to endocrine resistance (e.g., *CCND1*; ref. 4), denotes that ER α actively primes expression of target genes with relevance to resistance. This hypothesis is supported by the reversal of the tamoxifen-resistant phenotype upon disruption of the DNA-binding ability of ER α (37) and the recent identification of mutations in ER α in endocrine-resistant tumors (38, 39). For ER α , there is currently no appropriate readout system available to access its activation status in breast tissue, but the slight upregulation in tamoxifen-resistant tumors and MCF-7 cells point at a causative role of ER α in the acquisition of resistance.

Although AIB1 seems to function as the major coactivator of ER α and ER α in primary breast cancer (6, 17), conflicting results have been generated with respect to its role in tamoxifen resistance. The cumulating evidence, which argues against a strong contribution (40, 41), is consistent with our data as we detected a downregulation of AIB1 in recurrent tamoxifen-resistant tumors.

The genome-wide reprogramming of ER α and ER α to a newly acquired set of target genes raises the hypothesis that this redirection drives endocrine resistance. This assumption is in accordance with similar findings by Hurtado and colleagues and Ross-

Innes and colleagues (19, 20), who evaluated ER α -binding sites identified by ChIP-Seq, but did not focus on the global combination with transcriptional changes.

In the past, the structural relationship between ERR α and ER α and the corresponding existence of a few commonly regulated target genes (e.g., *pS2*; refs. 9, 14), led to the hypothesis that ERR α circumvents the requirement for ER α in antiestrogen-resistant breast carcinomas. Our data unambiguously demonstrate the existence of specific target repertoires for ER α and ERR α in tamoxifen-resistant breast cancer cells, implying that both engage in different transcriptional activities. Because ERR α is not directly affected by ER α antagonists such as tamoxifen (11), it can stimulate target gene expression independently of ER α to promote tamoxifen resistance. The resulting relative small proportion of overlapping target genes (15%–26.5%) is compatible with earlier reports that uncovered a distinct binding site preference in endocrine-responsive breast cancer (15, 42).

ERR α and ER α are regulated by oncogenic pathways, such as EGFR- or HER-2/neu, which are often inappropriately activated in antiestrogen resistance (4, 16, 43) and affect posttranslational modifications on nuclear hormone receptors. Irrespective of the presence of a ligand, tamoxifen-resistant MCF-7 cells are characterized by a constitutive phosphorylation of ER α at S118, which stimulates ligand-independent activation and reduces ER α 's affinity for DNA and tamoxifen binding (44). If inappropriate growth factor signaling indeed induces ligand-independent ER α binding via S118 phosphorylation and a corresponding target gene adaption on the genome-wide scale, our data provide a plausible biologic explanation for the clinically observed phenomenon that activated growth factor signaling abrogates response toward endocrine therapy (4).

ERR α 's mode of action is poorly understood, but it appears to act in a constitutive active cell context-, and promoter-dependent manner (14, 45, 46). It is assumed to possess specific signaling activities in dependency of the intrinsic breast cancer subtypes (15). As it has been hypothesized that *Luminal B* carcinomas, which largely overlap with antiestrogen-resistant tumors (47), evolve from endocrine-responsive *Luminal A* tumors (47–49), a subgroup switch would provide a rational explanation for the changed ERR α target spectrum in tamoxifen-resistant cells.

Despite the existence of entirely different transcriptional networks, we identified ER α and ERR α target genes in tamoxifen-resistant cells that feed into similar resistance-promoting processes such as cell proliferation (i.e., ER α , *CCND1* and ERR α , *CCNE1*; ref. 4), indicative for a functional redundancy. Several lines of evidence from our analyses underscore that the predicted functions of specific deregulated target genes in resistant cells indeed have phenotypic implications regarding proliferation: First, we found a positive relationship between ERR α and the proliferation marker KI-67 in a large panel of ER α -positive breast carcinomas. Second, our functional analyses unraveled that tamoxifen-resistant cells have a higher requirement for ERR α than sensitive cells to sustain proliferation. The comparable phenotype in fulvestrant-resistant cells may point at a broader function of ERR α in the adaption toward endocrine therapy in permanently ER α -depleted cell populations. This idea is in good agreement with earlier *in vitro* and mouse xenograft experiments, which also indicated an indispensable role of ERR α for the proliferation of ER α -nega-

tive breast cancer cells (7, 42). Importantly, the preclinical observations were reflected by the clinical course: ERR α expression correlated with a reduced OS in independent endocrine-treated patient cohorts.

Currently, drugs targeting ERR α that possess the desired properties for a clinical application are not yet available, but a principle druggability of the transcription factor has been demonstrated *in vitro* and *in vivo* (7, 42). Moreover, the respective ERR α knockout mouse is characterized by a fairly moderate phenotype (50), which increases the likelihood of tolerable side effects.

In conclusion, we identified ERR α as a potential key mediator of endocrine resistance and underline the prevailing view that ER α preserves a pivotal role in tamoxifen-resistant breast carcinomas. Despite the existence of distinct ERR α and ER α target repertoires, their concerted action presents a potential resistance scenario and reinforces the concept of combinatorial targeting strategies directed against both nuclear receptors. Hence, we provide a rationale to consider ERR α as a potential drug target in endocrine-resistant breast carcinomas that do not respond to first-line antiestrogen therapy.

Disclosure of Potential Conflicts of Interest

R. Büttner has ownership interest (including patents) in Targos Molecular Pathology Inc. and is a consultant/advisory board member for Roche, Novartis, Qiagen, Boehringer, GlaxoSmithKline, MSD, Bristol-Myers Squibb, and Lilly. No potential conflicts of interest were disclosed by the other authors.

Authors' Contributions

Conception and design: V. Thewes, A. Schneeweiss, U. Deuschle, M. Zapatka, S. Heck, P. Licher

Development of methodology: V. Thewes

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): R. Simon, T. Anzeneder, R. Büttner, V. Benes, G. Sauter, B. Burwinkel, R.I. Nicholson, H.-P. Sinn, A. Schneeweiss, P. Licher

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): V. Thewes, R. Simon, M. Zapatka, S. Heck

Writing, review, and/or revision of the manuscript: V. Thewes, T. Anzeneder, R. Büttner, B. Burwinkel, A. Schneeweiss, M. Zapatka, S. Heck, P. Licher

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): P. Schroeter, M. Schlotter, T. Anzeneder, B. Burwinkel, A. Schneeweiss, P. Licher

Study supervision: U. Deuschle, S. Heck, P. Licher

Other (developed a number of the endocrine-resistant cell lines upon which the article is based): R.I. Nicholson

Acknowledgments

The authors thank Martina Seiffert, Frauke Devens, and Daniel Haag for valuable discussions. We further acknowledge the excellent technical assistance of Bianca Baying, Karin Pfleger, and Katharina Mattes. The authors appreciate the help of Sebastian Aulmann for histologic evaluations during establishment of the IHC protocol. Moreover, the authors in particular thank Martina Scharpf and all gynecologists and pathologists associated with foundation PATH for their willingness to provide us with tumor samples.

Grant Support

This study was supported by the Helmholtz Graduate School for Cancer Research (V. Thewes).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received March 12, 2014; revised October 28, 2014; accepted November 13, 2014; published OnlineFirst February 2, 2015.

References

1. Tamoxifen for early breast cancer: an overview of the randomised trials. Early breast cancer trialists' collaborative group. *Lancet* 1998;351:1451–67.
2. Jordan VC, Brodie AM. Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. *Steroids* 2007;72:7–25.
3. Frasor J, Stossi F, Danes JM, Komm B, Lytle CR, Katzenellenbogen BS. Selective estrogen receptor modulators: discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells. *Cancer Res* 2004;64:1522–33.
4. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. *Nat Rev Cancer* 2009;9:631–43.
5. Suzuki T, Miki Y, Moriya T, Shimada N, Ishida T, Hirakawa H, et al. Estrogen-related receptor alpha in human breast carcinoma as a potent prognostic factor. *Cancer Res* 2004;64:4670–6.
6. Heck S, Rom J, Thewes V, Becker N, Blume B, Sinn HP, et al. Estrogen-related receptor alpha expression and function is associated with the transcriptional coregulator AIB1 in breast carcinoma. *Cancer Res* 2009;69:5186–93.
7. Chisamore MJ, Wilkinson HA, Flores O, Chen JD. Estrogen-related receptor-alpha antagonist inhibits both estrogen receptor-positive and estrogen receptor-negative breast tumor growth in mouse xenografts. *Mol Cancer Ther* 2009;8:672–81.
8. Deblasio G, Chahrou G, Perry MC, Sylvain-Drolet G, Muller WJ, Giguere V. Transcriptional control of the ERBB2 amplicon by ERRalpha and PGC-1beta promotes mammary gland tumorigenesis. *Cancer Res* 2010;70:10277–87.
9. Giguere V, Yang N, Segui P, Evans RM. Identification of a new class of steroid hormone receptors. *Nature* 1988;331:91–4.
10. Horard B, Vanacker JM. Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. *J Mol Endocrinol* 2003;31:349–57.
11. Coward P, Lee D, Hull MV, Lehmann JM. 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor gamma. *Proc Natl Acad Sci U S A* 2001;98:8880–4.
12. Lanvin O, Bianco S, Kersual N, Chalbos D, Vanacker JM. Potentiation of ICI182,780 (Fulvestrant)-induced estrogen receptor-alpha degradation by the estrogen receptor-related receptor-alpha inverse agonist XCT790. *J Biol Chem* 2007;282:28328–34.
13. Stein RA, McDonnell DP. Estrogen-related receptor alpha as a therapeutic target in cancer. *Endocr Relat Cancer* 2006;13:S25–32.
14. Lu D, Kiriyama Y, Lee KY, Giguere V. Transcriptional regulation of the estrogen-inducible pS2 breast cancer marker gene by the ERR family of orphan nuclear receptors. *Cancer Res* 2001;61:6755–61.
15. Deblasio G, Hall JA, Perry MC, Laganiere J, Ghahremani M, Park M, et al. Genome-wide identification of direct target genes implicates estrogen-related receptor alpha as a determinant of breast cancer heterogeneity. *Cancer Res* 2009;69:6149–57.
16. Ariazi EA, Kraus RJ, Farrell ML, Jordan VC, Mertz JE. Estrogen-related receptor alpha1 transcriptional activities are regulated in part via the ErbB2/HER2 signaling pathway. *Mol Cancer Res* 2007;5:71–85.
17. Gojis O, Rudraraju B, Gudi M, Hogben K, Sousha S, Coombes RC, et al. The role of SRC-3 in human breast cancer. *Nat Rev Clin Oncol* 2010;7:83–9.
18. Welboren WJ, van Driel MA, Janssen-Megens EM, van Heeringen SI, Sweep FC, Span PN, et al. ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. *EMBO J* 2009;28:1418–28.
19. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. FOXA1 is a key determinant of estrogen receptor function and endocrine response. *Nat Genet* 2011;43:27–33.
20. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. *Nature* 2012;481:389–93.
21. Waldmann A, Anzeneder T, Katalinic A. Patients and methods of the PATH biobank - a resource for breast cancer research. *Gebrüdershilfe und Frauenheilkunde* 2014;74:361–69.
22. Ruiz C, Seibt S, Al Kuraya K, Siraj AK, Mirlacher M, Schraml P, et al. Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. *Int J Cancer* 2006;118:2190–4.
23. Chanion M, Negre V, Fontaine H, Salvetat N, Bibeau F, Mac Grogan G, et al. A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer. *Clin Cancer Res* 2008;14:1744–52.
24. Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. *Endocrinology* 2003;144:1032–44.
25. McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM, et al. Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex). *Endocrinology* 2001;142:2776–88.
26. Tonjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. *Nat Med* 2013;19:901–8.
27. Stone A, Valdes-Mora F, Gee JM, Farrow L, McClelland RA, Fiegl H, et al. Tamoxifen-induced epigenetic silencing of oestrogen-regulated genes in anti-hormone resistant breast cancer. *PLoS ONE* 2012;7:e40466.
28. Welboren WJ, Sweep FC, Span PN, Stunnenberg HG. Genomic actions of estrogen receptor alpha: what are the targets and how are they regulated? *Endocr Relat Cancer* 2009;16:1073–89.
29. Mohsin SK, Weiss H, Havighurst T, Clark GM, Berardo M, Roanh le D, et al. Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. *Mod Pathol* 2004;17:1545–54.
30. Gyorffy B, Surowiak P, Kiesslich O, Denkert C, Schafer R, Dietel M, et al. Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. *Int J Cancer* 2006;118:1699–712.
31. Thrane S, Lykkesfeldt AE, Larsen MS, Sorensen BS, Yde CW. Estrogen receptor alpha is the major driving factor for growth in tamoxifen-resistant breast cancer and supported by HER/ERK signaling. *Breast Cancer Res Treat* 2013;139:71–80.
32. Beelen K, Zwart W, Linn SC. Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy? *Nat Rev Clin Oncol* 2012;9:529–41.
33. Brunner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, et al. MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. *Cancer Res* 1997;57:3486–93.
34. Ariazi EA, Clark GM, Mertz JE. Estrogen-related receptor alpha and estrogen-related receptor gamma associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. *Cancer Res* 2002;62:6510–8.
35. Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC, et al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. *J Clin Oncol* 2005;23:2469–76.
36. Drury SC, Detre S, Leary A, Salter J, Reis-Filho J, Barbashina V, et al. Changes in breast cancer biomarkers in the IGF1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. *Endocr Relat Cancer* 2011;18:565–77.
37. Wang LH, Yang XY, Zhang X, An P, Kim HJ, Huang J, et al. Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer. *Cancer Cell* 2006;10:487–99.
38. Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. *Cell Rep* 2013;4:1116–30.
39. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. *Nat Genet* 2013;45:1439–45.
40. Weiner M, Skoog L, Fornander T, Nordenskjold B, Sgroi DC, Stal O. Oestrogen receptor co-activator AIB1 is a marker of tamoxifen benefit in postmenopausal breast cancer. *Ann Oncol* 2013;24:1994–9.
41. Burandt E, Jens G, Holst F, Janicke F, Muller V, Quaas A, et al. Prognostic relevance of AIB1 (NCoA3) amplification and overexpression in breast cancer. *Breast Cancer Res Treat* 2013;137:745–53.
42. Stein RA, Chang CY, Kazmin DA, Way J, Schroeder T, Wergin M, et al. Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer. *Cancer Res* 2008;68:8805–12.

43. Barry JB, Giguere V. Epidermal growth factor-induced signaling in breast cancer cells results in selective target gene activation by orphan nuclear receptor estrogen-related receptor alpha. *Cancer Res* 2005;65:6120–9.
44. Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA. Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. *Mol Endocrinol* 2006;20:3120–32.
45. Vanacker JM, Bonnelye E, Chopin-Delannoy S, Delmarre C, Cavaillès V, Laudet V. Transcriptional activities of the orphan nuclear receptor ERR alpha (estrogen receptor-related receptor-alpha). *Mol Endocrinol* 1999;13:764–73.
46. Kallen J, Schlaeppi JM, Bitsch F, Filipuzzi I, Schilb A, Riou V, et al. Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor alpha (ERRalpha): crystal structure of ERRalpha ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1alpha. *J Biol Chem* 2004;279:49330–7.
47. Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. *Ann Rev Med* 2011;62:233–47.
48. Creighton CJ. The molecular profile of luminal B breast cancer. *Biologics* 2012;6:289–97.
49. Allred DC, Brown P, Medina D. The origins of estrogen receptor alpha-positive and estrogen receptor alpha-negative human breast cancer. *Breast Cancer Res* 2004;6:240–5.
50. Luo J, Sladek R, Carrier J, Bader JA, Richard D, Giguere V. Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. *Mol Cell Biol* 2003;23:7947–56.