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Highlights
e Single-cell proteomics reveals tumor and immune cell
diversity in tumor ecosystems

e Breast cancer exhibits tumor cell phenotypic abnormalities
and tumor individuality

e PD-L1" TAMs and exhausted T cells are abundant in high-
grade ER™ and ER™ tumors

e Tumor-immune relationships in the tumor ecosystem are
patient-stratifying
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In Brief

A single-cell atlas of cancer and immune
cells reveals distinct tumor ecosystems
across breast cancer patients, informing
prognosis and, potentially, therapy
selection.
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SUMMARY

Breast cancer is a heterogeneous disease. Tumor
cells and associated healthy cells form ecosystems
that determine disease progression and response
to therapy. To characterize features of breast cancer
ecosystems and their associations with clinical data,
we analyzed 144 human breast tumor and 50 non-
tumor tissue samples using mass cytometry. The
expression of 73 proteins in 26 million cells was eval-
uated using tumor and immune cell-centric antibody
panels. Tumors displayed individuality in tumor cell
composition, including phenotypic abnormalities
and phenotype dominance. Relationship analyses
between tumor and immune cells revealed charac-
teristics of ecosystems related to immunosuppres-
sion and poor prognosis. High frequencies of PD-
L1* tumor-associated macrophages and exhausted
T cells were found in high-grade ER* and ER™ tu-
mors. This large-scale, single-cell atlas deepens
our understanding of breast tumor ecosystems and
suggests that ecosystem-based patient classifica-
tion will facilitate identification of individuals for pre-
cision medicine approaches targeting the tumor and
its immunoenvironment.

1330 Cell 1777, 1330-1345, May 16, 2019 © 2019 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

INTRODUCTION

Breast cancer is the major cause of cancer death among women
worldwide (Torre etal., 2017). Amajor obstacle forimplementation
of precision medicine is our lack of understanding of breast cancer
ecosystems. Tumor ecosystems are comprised of cancer cells,
infiltrating immune cells, stromal cells, and other cell types
together with non-cellular tissue components (McAllister and
Weinberg, 2010). Cancer cells and tumor-associated cells are
phenotypically and functionally heterogeneous because of ge-
netic and non-genetic sources. Targets of current therapies and
therapies under development, including the estrogen receptor
(ER), HER2, the phosphatidylinositol 3-kinase (PI3K), the AKT
serine/threonine kinases (AKTs), the mammalian target of rapa-
mycin (MTOR), the androgen receptor (AR), the epidermal growth
factor receptor (EGFR), the poly (ADP-ribose) polymerase (PARP),
BCL-2, Survivin, CDK4, CDK®6, and methyltransferases, are het-
erogeneously expressed within and between patients (Marusyk
et al., 2012). This heterogeneity equips cancer cells for
proliferation, survival, and invasion and likely underlies differential
treatment efficacies (Ramos and Bentires-Alj, 2015). Recent sin-
gle-cell genomic and transcriptomic analyses of breast cancer
provided insights into intratumor genomic diversity and intertumor
differences in clonal composition, but very few cells and tumors
were analyzed (Chung et al., 2017; Nik-Zainal et al., 2012). In the
healthy mammary gland, phenotypes of luminal and myoepithelial
(basal) cells are tightly controlled (Visvader and Stingl, 2014).
[ |
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Luminal cells heterogeneously express ER, the progesterone re-
ceptor (PR), and the cytokeratins K7, K8, and K18, whereas basal
cells express K5, K14, and smooth muscle actin (SMA) for proper
tissue function (Santagata et al., 2014).

Tumor ecosystems are further shaped by cellular relationships
and strategies targeting relationships that promote tumor devel-
opment hold considerable promise (McAllister and Weinberg,
2010). Examples are immune checkpoint inhibition therapies tar-
geting exhausted and regulatory T cells (T-regs) (Wherry and Kur-
achi, 2015; Vargas et al., 2018). T cell exhaustion can be mediated
by tumor cells, tumor-associated macrophages (TAMs), and stro-
mal cells through activation of co-inhibitory receptors such as
PD-1, CTLA-4, and TIM-3. T-regs can secrete immunosuppres-
sive cytokines (Quail and Joyce, 2013). Ongoing clinical trials
suggest that the response rates to checkpoint inhibition therapies
in breast cancer are not comparable with those of melanoma
or lung cancer patients, likely because of lower immunogenicity
(Dieci et al., 2016). However, in cohorts selected for patients
with PD-L1* breast tumors, higher overall response rates have
been reported (Wein et al., 2018). TAMs can modulate tumor eco-
systems either through immunosuppressive actions (e.g., PD-L1
expression) or by promoting tumor growth, angiogenesis, and in-
vasion (Cassetta and Pollard, 2018; Quail and Joyce, 2013) and
are thus promising therapeutic targets.

Given the heterogeneity of cell phenotypes and cellular rela-
tionships in breast cancer, patient classification and treatment
should ideally consider the entire tumor ecosystem. Recent sin-
gle-cell RNA sequencing studies provided a glimpse into breast
cancer immune cell phenotypic diversity and ecosystems (Azizi
etal.,2018; Chungetal., 2017), laying a foundation for studies us-
ing large patient cohorts. Currently, however, breast tumors are
stratified for clinical purposes based on tumor cell expression
of ER, PR, HER2, and the proliferation marker Ki-67 (Coates
et al., 2015). These biomarkers are used for treatment decisions,
serve as surrogates for prognostic gene expression profiles, and
categorize tumors as luminal A (ER* and/or PR*, HER2 ™, Ki-67" <
20%), luminal B (ER* and/or PR*, HER2, Ki-67* > 20%), luminal
B-HER2" (ER* and/or PR*, HER2*), HER2* (ER"PR"HER2"), and
triple-negative (TN; ER"PR™HER2™) (Perou et al., 2000). Alterna-
tive classification schemes based on gene expression and
genomic alterations have been proposed (Curtis et al., 2012). In
addition, pathological tumor grading assesses morphological
deviation of tumor tissue and cells from normal to predict patient
prognosis (American Joint Committee on Cancer, 2017).
Although these stratifications have improved therapy success,
patient responses vary within each subtype, demanding better
characterization of breast cancer ecosystems.

Here we applied single-cell mass cytometry (Bandura et al.,
2009; Bendall et al., 2011) to millions of cells from 144 human
breast tumor samples covering all clinical subtypes to elucidate
the phenotypic diversity and tumor-immune cell relationships in
breast cancer ecosystems. Non-tumor controls comprised 46
samples juxtaposed to tumor tissue (“juxta-tumoral”) and four
mammoplasty samples from breast cancer-free individuals.
Our data revealed vast phenotypic diversity among tumor and
immune cells in breast cancer ecosystems. To quantify aspects
of tumor heterogeneity, we introduced computational scores
describing tumor phenotypic abnormality, individuality, and rich-

ness. Each tumor ecosystem was composed of tumor cells with
varying phenotypic abnormalities, and tumor cell phenotypes
associated with therapy resistance were abundant. We identified
tumor and immune cell phenotypes and phenotype relationships
linked to poor prognosis, immunosuppression, and response to
checkpoint inhibitor immunotherapy in high-grade ER™ tumors
and in high-grade ER* tumors, which are typically not associated
with immunogenicity. This single-cell atlas provides a foundation
for patient classification based on the breast cancer ecosystem.

RESULTS

A Single-Cell Proteomic Atlas of Breast Cancer
Ecosystems

We performed large-scale mass cytometry profiling of 144 pro-
spectively collected tumor samples, including 54 luminal A, 71
luminal B, six luminal B-HER2*, one HER2*, and six TN tumors
(Tables S1 and S2; Coates et al., 2015). Histopathology divided
the samples into 106 invasive ductal, 15 invasive lobular, and 19
mixed or other tumors (Table S2). An automated system was
used to generate single-cell suspensions from all tissue samples
(STAR Methods). These samples and seven breast cancer cell
lines were mass tag-barcoded (Zunder et al., 2015), pooled
for antibody staining with 73 antibodies, and simultaneously
analyzed by mass cytometry (Figures 1A and S1A; STAR
Methods). Animmune cell-centric antibody panel focused onim-
mune phenotyping and was based on our recent immune cell
atlas of clear cell renal cell carcinoma (ccRCC) (Chevrier et al.,
2017; Table S8). A tumor cell-centric panel was built to quantify
markers that identify mammary cell types, signaling, prolifera-
tion, and survival (Table S4). Application of our workflow yielded
26 million single-cell profiles with an average of 84.7% live, non-
apoptotic cells per sample (Figures S1B and S1C).

To ensure high data quality, we confirmed the similarity of
marker expression of duplicate samples across barcoding plates
and of live cell and immune cell frequencies across antibody
panels (Figures S1D and S1E). Neither sample collection nor pro-
cessing led to batch effects (Figures S1F and S1G; STAR
Methods). Minimal spillover between mass detection channels
was corrected using a bead-based compensation workflow
(Chevrier et al., 2018). The frequencies of ER*, PR*, HER2*,
and Ki-67* tumor cells, determined by mass cytometry, were
comparable with the matched pathological immunohistochem-
istry scores (Figures STH-S1L; STAR Methods).

To visualize the diversity of tumor and non-tumor cells, we
generated two-dimensional graphs using the dimensionality
reduction algorithm t-distributed stochastic neighbor embed-
ding (t-SNE; Van Der Maaten and Hinton, 2008; Figure 1B;
STAR Methods). Most cells were epithelial (expressing the
epithelial cell adhesion molecule [EpCAM], E-Cadherin, and
epithelial cytokeratins) or immune (CD45%). Endothelial cells
(CD31*) and fibroblasts (FAP*"SMA*~) were less abundant
(Figure 1B). Additional fibroblast subsets (Costa et al., 2018)
and adipocytes were likely among the cells described as “other”
(Figure 1C). To compare cell type frequencies between tumor
and non-tumor tissue, we applied the PhenoGraph algorithm
(Levine et al., 2015), which partitioned our high-dimensional sin-
gle-cell data into 42 clusters (Figures S1TM and S1N; STAR
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Figure 1. A Single-Cell Proteomic Atlas of Breast Cancer Ecosystems

(A) Experimental approach.

(B) t-SNE plots of EpCAM, CD45, CD31, and FAP expression in 58,000 cells from all samples using a 0 to 1 normalization.

(C) t-SNE as in (B), colored by cell type.

(D and E) Frequencies of live epithelial cells, immune cells, endothelial cells, and fibroblasts for (D) mammoplasty (M), juxta-tumoral (JT), and tumor (T) samples

and (E) tumor subtypes.

Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S1.

Methods). Marker expression profiles reliably assigned these
clusters to cell types (Figures 1C and S1M). Breast tumors
were enriched for epithelial cells and contained fewer endothelial
cells and fibroblasts than non-tumor tissues (Figure 1D).
FAP*SMA™ fibroblasts were more abundant in tumors than in
juxta-tumoral tissue (Figures S10 and S1P). The cell type fre-
quencies varied among and between tumor subtypes, with a
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higher frequency of immune cells observed in TN and HER2*
samples than in other breast cancer types (Figures 1E and S1P).

The Immune Landscape of Breast Cancer

T cells and myeloid cells were the most abundant immune cell
types in our study; fewer natural killer (NK) cells, B cells, granu-
locytes, plasma cells, basophils, and plasmacytoid dendritic
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cells were detected (Figures 2A and S2A-S2D). Breast tumors
were enriched for T cells and B cells and contained a lower fre-
quency of NK cells and granulocytes than juxta-tumoral tissue
(Figure 2A). There was considerable inter-patient variation in
tumor-associated immune cell frequencies (Figure 2A), as
described previously (Azizi et al., 2018; Chevrier et al., 2017;
Lavin et al., 2017).

T cells and macrophages can exert pro-tumor or anti-tumor ac-
tivities (Quail and Joyce, 2013). In-depth analyses of T cells by
t-SNE and PhenoGraph identified ten CD4* and ten CD8" T cell
clusters (TO1-T20; Figures 2B-2D). Most T cell clusters had an
effector memory phenotype (CD197'°%, CD45RA°%), and tu-
mor-associated T cells existed as a phenotypic continuum across
the CD4* and CD8" lineages (Figures 2D and S2E; Azizi et al.,
2018; Egelston et al., 2018). Various levels of PD-1 and heteroge-
neous co-expression of co-inhibitory receptors and activation
markers were detected among CD8" (T11, T14, and T07) and
CD4* T cell clusters (T09, T13, and T18). An increase in PD-1
levels and receptor co-expression likely represent increasingly
exhausted T cell states (Wherry and Kurachi, 2015). PD-
1"9"CD8* T cells (T11) expressed the co-inhibitory receptors
TIM-3 and CTLA-4 and the activation markers HLA-DR and
CD38 (Figure 2D). This phenotype was associated with T cell
exhaustion and anti-PD-1 therapy response in melanoma (Daud
et al., 2016; Sade-Feldman et al., 2018). PD-1"9"CD4* T cells
(TO9 and T13) were positive for CTLA-4, CD38, and CD278 but
negative for TIM-3 and HLA-DR. PD-1"CD8" (T07 and T14)
and PD-1"CD4* T cells (T18) were negative for CTLA-4, TIM-3,
HLA-DR, and CD38 (Figure 2D). T-regs (T01) were identified
based on expression of CD4, FOXP3, CD25, and CTLA-4.
T-regs and PD-1"S"CTLA-4*CD38* T cells (T09, T11, and T13)
were enriched in tumors compared with juxta-tumoral tissue (Fig-
ure 2E). The majority of patients showed PD-1* T cells, which
comprised up to 26.6% of total tumor-associated T cells but
were rare in juxta-tumoral tissue (Figure S2F). Most PD-1*
T cells were found within the CD8" compartment (Figure 2F,
top). However, the mean expression level of PD-1 was higher in
CD4* than in CD8™" T cells (Figure 2F, bottom). The mean expres-
sion level of PD-1 and the PD-1* T cell frequency correlated in the
CD4* and CD8* compartments, supporting the hypothesis that
these cells result from T cell expansion (Figure 2G; Keren et al.,
2018; Li et al., 2019).

ER™ breast cancer subtypes reportedly respond better to im-
mune checkpoint blockade than ER* subtypes (Dieci et al.,
2016). We observed differences in the T cell landscapes of
ER™ and ER* tumors, including a higher frequency of T-regs in
ER™ disease (Figure 2H). In more than half of ER™ tumors (6 of
10) but only 12% of ER* tumors (16 of 132), over 10% of
T cells expressed PD-1 (Figure S2G). Distinct PD-1* phenotypes
were separately enriched: PD-1"9"CTLA-4*CD38* T cells (T09,
T11, and T13) were more frequent in ER™ tumors, whereas
PD-1™CTLA-4-CD38™ T cells (T14) were enriched in ER* tumors
(Figure 2H). Many ER* tumors did, however, show frequencies of
PD-1"MS"CTLA-4*CD38" T cells and T-regs comparable with or
higher than ER™ tumors (Figure 2H). Therefore, our data support
that patients with ER™ tumors are candidates forimmunotherapy
(Dieci et al., 2016) and indicate that a subset of patients with ER*
tumors should benefit, too.

ER* tumors can be divided into luminal A and luminal B based
on low and high proliferation, respectively. More than 10% of
T cells expressed PD-1 in 18% of luminal B tumors but only
7% of luminal A tumors (Figure S2H). PD-1™CTLA-4-CD38~
T cells (TO7) were more frequent in luminal A disease, and
T-regs were enriched in luminal B tumors (Figure 21). We also
observed distinct T cell landscapes in tumors of different grades.
PD-1* T cells accounted for more than 10% of T cells in 28% of
grade 3 tumors, 9% of grade 2 tumors, and 10% of grade 1
tumors (Figure S2I). Grade 3 tumors had more PD-1""CTLA-
4*CD38* T cells (T0O9 and T11) and fewer PD-1™CTLA-
4-CD38" T cells (TO7 and T14) than tumors of lower grades (Fig-
ure S2J). This demonstrates that an immunosuppressed T cell
landscape is linked to poor-prognosis tumors, including ER™,
high-proliferation, and high-grade tumors, but is also observed
in a subset of ER* tumors.

Breast Tumors Are Enriched for Imnmunosuppressive
Macrophage Phenotypes

To characterize TAM populations, t-SNE and PhenoGraph were
applied to all myeloid cells (Figures 2J and S2D), resulting in 19
myeloid clusters (M01-M19) of five categories: (1) CD14-ex-
pressing classic (M06, CD14*CD167) and inflammatory mono-
cytes (M15, CD14"™CD16%), (2) early immigrant macrophages
(M03, M11, M13, HLA-DR™CD192*), (3) tissue-resident macro-
phages (M08, M09, M16, CD206*HLA-DR™), (4) TAMs (MOT,

Figure 2. The Breast Cancer Inmune Landscape

(A) Frequencies of selected immune cell types in juxta-tumoral and tumor samples.
(B) t-SNE plots of the normalized marker expression of 40,000 T cells from all samples.

(C) t-SNE of T cells colored by PhenoGraph cluster.

(D) Heatmap of normalized T cell marker expression for 20 T cell clusters. CM, central memory; Eff/Mem, effector and memory; Reg, regulatory; PD-1, PD-1*.
(E) Boxplots showing the frequencies of the CD4* (left) and CD8* T cell clusters (right) in juxta-tumoral and tumor samples.

(F) PD-1* T cell frequency (top) and mean PD-1 expression (bottom) among tumor-derived CD4* and CD8™" T cells.

(G) Comparison of the PD-1* T cell frequency and mean PD-1 expression for CD8" (top) and CD4* T cells (bottom).

(H and I) Frequencies of selected T cell clusters in (H) ER" and ER™ tumors and (I) luminal A and B tumors.

(J) t-SNE plots of normalized marker expression of 40,000 myeloid cells from all samples.

(K) t-SNE of myeloid cells colored by PhenoGraph cluster.

(L) Heatmap of normalized myeloid marker expression for 19 myeloid clusters. Mono, monocyte; T.-res, tissue-resident; E. im., early immigrant; TAM, tumor-

associated macrophage; MDSC, myeloid-derived suppressor cell.
(M) Frequencies of the myeloid clusters in juxta-tumoral and tumor samples.

(N and O) Frequencies of the indicated myeloid clusters in (N) ER* and ER™ tumors and (O) luminal A and B tumors.
Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S2.
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Figure 3. Tumor Cell Phenotypic Landscape in Breast Cancer
(A) t-SNE plots of normalized marker expression of 180,000 epithelial cells from all samples.
(B) t-SNE highlighting the distribution of cells from tumor, juxta-tumoral, and mammoplasty tissue.

(legend continued on next page)
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M02, M04, M14, M17, CD64"S"HLA-DRM"), and (5) myeloid-
derived suppressor cells (MDSC; M07, M10, M12, HLA-DR~"°%)
(Figures 2K and 2L). Consistent with previous reports (Azizi et al.,
2018; Chevrier et al., 2017), the myeloid phenotypic space
differed between tumor and juxta-tumoral regions (Figure 2M).
In 80% of tumors, at least 10% of myeloid cells were PD-L1*
(Figure S2K; Cimino-Mathews et al., 2016). The PD-L1* TAMs
were phenotypically heterogeneous. TAMs in cluster MO1 ex-
pressed CD38, the pro-tumor markers CD204, CD206, and
CD163 and the anti-tumor marker CD169; TAMs in M02 ex-
pressed CD204, CD169, and intermediate levels of CD163
and CD38; and TAMs in M17 expressed CD169 and CD38 (Fig-
ure 2L). Expression of CD38 is associated with immunosuppres-
sive macrophages in ccRCC patients and with MDSC-mediated
T cell suppression in colorectal cancer (Chevrier et al., 2017;
Karakasheva et al., 2018). Our results therefore link CD38 and
PD-L1 and confirm co-expression of pro- and anti-inflammatory
markers by tumor-associated myeloid cells, including PD-L1*
TAMs (Azizi et al., 2018; Chevrier et al., 2017). Tumors were en-
riched for TAMs and depleted of tissue-resident macrophages
(M08 and M09), classical circulating (M06), and pro-inflamma-
tory (M15) monocytes compared with juxta-tumoral tissue
(Figure 2M).

Infiltration by TAMs is associated with aggressive disease (Quail
and Joyce, 2013). ER™ tumors contained higher frequencies of
MO01 and M17 PD-L1* TAMs and fewer myeloid cells with M04,
MO05, M10, or M12 phenotypes compared with ER" tumors (Fig-
ure 2N). A subset of ER* tumors had M01 and M02 PD-L1*
TAMs at frequencies comparable with or higher than ER™ tumors
(Figures 2N and S2L). Luminal B tumors contained more myeloid
cells with the MO7 or M17 phenotype, less with the M04 pheno-
type, and more PD-L1" TAMs compared with luminal A tumors
(Figures 20 and S2M). PD-L1* TAMs were enriched in grade 3
tumors compared with grade 2 tumors (Figure S2N). Grade 3
tumors contained fewer cells with the M04 or MO5 phenotype
but more classical monocytes (M06) than lower-grade tumors
(Figure S20).

Tumor Epithelial Cells Are Heterogeneous and
Phenotypically Abnormal
The analysis of epithelial cells from tumor and non-tumor tissues
(STAR Methods) revealed bimodal and gradient-like expression
of epithelial markers, indicative of many distinct cell phenotypes
(Figures 3A and 3B). A consensus clustering approach imple-
mented in PhenoGraph (Figure S3A; STAR Methods) revealed
45 epithelial clusters (Ep01-Ep45). Hierarchical clustering classi-
fied these into seven luminal groups, L1-L7, and two basal
groups, B1 and B2, based on marker expression (Figures 3C,
S3B, and S3C).

We identified luminal and myoepithelial cells in mammoplasty
and juxta-tumoral tissue based on lineage marker expression
patterns (Figures 3C, 3D, and S3D; Santagata et al., 2014; Vis-

vader and Stingl, 2014). Mammary epithelial cell lines confirmed
the reliability of these patterns (Figure 3E; Neve et al., 2006).
About 63% of cells from mammoplasties and 77% of juxta-tu-
moral tissue-derived cells were members of groups L1 and L2,
characterized by expression of K7, K8, and K18 and low levels
of or no ERa (Figures 3C and 3D). Strong expression of EpCAM
and low levels of the adhesion integrin CD49f indicated luminal
cell maturity (Figures 3C and S3D; Stingl et al., 2001). Prolifer-
ating (Ki-67*) non-tumor luminal cells were also identified (Fig-
ure S3E; Santagata et al., 2014). About 55% of tumor-derived
cells were members of groups L1 and L2, showing that differen-
tiated normal-like luminal cells were abundant in tumor samples.

Groups L3-L7 were dominated by tumor cells (Figure 3C).
Group L3 phenotypes showed high levels of EpCAM and
CD49f and low ERa. expression (Figures 3C and S3D-S3F), char-
acteristics of luminal progenitor cells (Stingl et al., 2001). Group
L4 phenotypes displayed high levels of the hormone receptors
ERa., progesterone receptor B (PRB), and AR and the receptor
tyrosine kinases HER2, EGFR, and the hepatocyte growth factor
receptor (c-MET) (Figures 3C and S3F), which are involved in
tumor cell proliferation and migration (Hsu and Hung, 2016).
Co-expression of these receptors with ERa. or HER2 can confer
resistance to anti-ERa and anti-HER2 treatments (Hsu and
Hung, 2016; Murphy and Dickler, 2016). Strong receptor tyrosine
kinase expression and high levels of ERa, the methyltransferase
EZH2, its target H3K27me3, and the anti-apoptotic factors Sur-
vivin and BCL-2 were observed in group L5 (Figures 3C and S3F).
EZH2-induced epigenetic alterations can equip tumor cells for
expansion and invasion (Visvader and Stingl, 2014). Survivin
and BCL-2 are associated with cell death evasion and risk of
recurrence in ER* disease (Parker et al., 2009). Group L6 pheno-
types expressed K7, K8, K18, ERa, HER2, low levels of CD49f,
and high levels of E-Cadherin and CD24 (Figures 3C and S3F),
indicative of luminal cell maturity with ERa and HER2 pathway
activity. Group L7 phenotypes were ERo.~ and HER2'°Y and ex-
pressed HLA-DR, a surface receptor associated with tumor
immunogenicity (Figures 3C and S3F; Park et al., 2017). Lack
of ERa and HER2 is associated with resistance to anti-ERa
and anti-HER2 treatments. Ki-67" luminal tumor cells were found
in all luminal cluster groups and were most frequent in group L7
(Figure S3G).

Group L1-L7 phenotypes were differently distributed across
tumor subtypes. Group L1 and L2 phenotypes indicative of
mature luminal cells and group L4 and L5 phenotypes strongly
expressing ERa were more frequent in luminal A and B tumors
than in HER2* and TN tumors (Figure 3F). Proliferating group
L7 phenotypes were frequent in several luminal B tumors, a
few luminal A tumors, and one TN tumor. Luminal B-HER2*
and HER2* tumors contained cells from groups L3 and L6
(Figure 3F). Many luminal tumors contained fewer K7* and
more K8* and K18" cells than adjacent non-tumor tissue (Fig-
ure S3H), suggesting a cytokeratin switch possibly induced by

(C) Heatmap of normalized epithelial cell marker expression for 45 epithelial clusters (left) and percentage and total number of cells from mammoplasty (M), juxta-

tumoral (JT), and tumor (T) tissue for each cluster (right).

(D and E) Histograms of the expression of epithelial lineage markers in (D) cells derived from juxta-tumoral tissue and (E) cell lines.

(F) Frequencies of cells of individual cluster groups by tumor subtype.

Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S3.
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upregulated PI3K and AKT signaling (Fortier et al., 2010). ERa.*
cells varied between 2% and 91% (median, 26.7%; interquartile
range [IQR], 26.8%), and ERa.*AR" cells varied between 0% and
44% (median, 1.7%; IQR, 4.3%) in ER* tumors.

We identified basal cell phenotypes in group B1 based on
expression of K5, K14, and Vimentin and in group B2 based on
expression of SMA, Vimentin, and low levels of K5 and K14. All
basal phenotypes lacked expression of K7, K8, K18, ER«, and
HER2 (Figure 3C). Non-tumor cells with a basal phenotype
were likely myoepithelial cells (Figure 3E; Santagata et al.,
2014). In contrast to juxta-tumoral tissue, myoepithelial cells
were sparse in mammoplasty samples, possibly as a conse-
quence of obesity (Chamberlin et al., 2017). Basal-like tumor
cells displayed high levels of Ki-67, EGFR, and the tumor sup-
pressor p53 (Figures S3F and S3G). Overexpression of EGFR
and p53 and lack of ERa and HER2 are characteristics of aggres-
sive, difficult-to-treat cancers (Perou et al., 2000). Both basal-like
and luminal ERe"HER2"PRBY™ phenotypes expressed high
levels of Survivin, indicative of survival pathway activity. The ma-
jority of luminal tumor samples (130 of 135) contained few cells
with a basal phenotype (0% to 5%, median, 0.35%), consistent
with a loss of myoepithelial cells (Sternlicht and Barsky, 1997).
Cells of group B2 were abundant in TN tumors (Figure 3F), in
line with a basal-like molecular subtype (Perou et al., 2000).
Tumor cells with a basal phenotype and tumor cells in luminal
clusters Ep16 and Ep32 co-expressed EpCAM, E-Cadherin,
and Vimentin, an epithelial-mesenchymal transition (EMT)
phenotype associated with tumor cell invasion and resistance
to chemotherapy (Fischer et al.,, 2015). Tumor cells with
the EMT phenotype were found in TN tumors and in several
luminal A and B tumors (Figure S3I). All subtypes except luminal
A had elevated frequencies of proliferating cells compared with
juxta-tumoral tissue (Figure S3J). Proliferation was strongest in
grade 3 tumors (Figure S3K).

Phenotypic Abnormalities and Tumor Individuality Are
Linked to Features of Poor Prognosis

Tumor cell heterogeneity is believed to drive disease progression
and to hamper therapies to eliminate all cells of the tumor
ecosystem (Ramos and Bentires-Alj, 2015). We established
three computational scores to quantify different aspects of

tumor heterogeneity (Figure 4A). Phenotypic abnormality de-
scribes the extent of tumor cell phenotypic deviation from non-
tumor epithelial cells. Tumor individuality quantifies the similarity
of tumors based on cell phenotypes. Tumor richness represents
the number of different co-existing tumor cell phenotypes within
an ecosystem.

To describe phenotypic abnormalities, we trained an artificial
neural network (autoencoder) (Goodfellow et al., 2016; Hinton
and Salakhutdinov, 2006) with multidimensional single-cell data
from the juxta-tumoral samples (STAR Methods). When trained,
the autoencoder recognized non-tumor epithelial cell phenotypes
and calculated a mean squared error (MSE) for every tumor cell
(Figure S4A). High MSE values indicated high levels of abnormal-
ity. The most abnormal tumor cells were detected in the epithelial
cluster groups L6, L7, B1, and B2 (Figure 4B). These included
ERo*PRB*HER2"AR" (Ep42 and Ep43) and ERo PRB*HER2™
AR*HLA-DR" luminal phenotypes (Ep37 and Ep38) and
ERo"PRB"HER2™AR™ basal-like EMT phenotypes (Ep01, Ep02,
Ep23, Ep24, and Ep25). Tumors containing mainly cells from
these clusters deviated more from juxta-tumoral tissue than tu-
mors enriched for cells from groups L1 and L2 (Figures 4C—4E).
Phenotypically abnormal cells were enriched in high-grade tu-
mors, most ER™ tumors, a subset of ER™ tumors, and tumors of
subtypes with poor prognosis (Figures 4F-4H). Phenotypic abnor-
mality correlated with hypoxia and proliferation marker expres-
sion (Figure 4l), reflecting abnormal growth conditions within the
tumor ecosystem (Marusyk et al., 2012). About 25% of CA9* tu-
mor cells exhibited an EMT phenotype compared with 4% of
CA9™ tumor cells. Some juxta-tumoral tissue samples in our
cohort contained phenotypically abnormal cells and high fre-
quencies of CA9" or Ki-67"* cells (Figures S4B and S4C; Table
S5), possibly representing areas of the pre-cancerous lesion
ductal carcinoma in situ.

To assess the individuality of tumor ecosystems, we applied a
graph-based approach to the epithelial cell data from all samples
(Figure 4A; STAR Methods). The individuality score indicated
whether cells of a sample were more similar to cells of the
same sample (score close to 1) or to cells of other samples (score
close to 0) (Figure S4D). Tumors displayed higher individuality
scores than juxta-tumoral tissues (Figure 4J). Importantly, tumor
individuality correlated with phenotypic abnormality (Figure 4K),

Figure 4. Molecular Phenotypic Abnormalities and Tumor Individuality Are Linked to Features of Poor Prognosis
(A) Phenotypic abnormality, individuality, and richness shown schematically using hypothetical phenotypes (shape) and tumors (color).

(B) Phenotypic abnormality scores of all epithelial clusters.

(C) Phenotypic abnormality scores of tumors and the median score of juxta-tumoral samples.
(D and E) Stacked histograms of (D) frequencies of cells per epithelial cluster group per tumor ordered by increasing phenotypic abnormality and (E) the average

frequencies for juxta-tumoral tissue.

(F-H) Tumor phenotypic abnormality scores by (F) grade, (G) ER status, and (H) subtype.
(I) Phenotypic abnormality scores versus the percentage of Ki-67* and CA9™ cells for tumors.

(J) Individuality scores for juxta-tumoral (JT) and tumor (T) tissue.

(K) Individuality scores versus phenotypic abnormality scores for tumors.
(L) Individuality scores for ER* and ER™ tumors.

(M) Individuality scores versus the percentage of ERa* cells for ER* tumors.

(N) Heatmap of presence and proportion of the 45 epithelial clusters for all samples.
(O) Richness scores for mammoplasty (M), juxta-tumoral (JT), and tumor (T) samples.

(P) Individuality scores versus richness scores for tumors.

(Q) Cluster frequency map for ten tumors that had not regressed despite neoadjuvant chemotherapy.
Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S4.
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suggesting that the more tumor cells deviate phenotypically from
non-tumor cells, the less likely they are to be found in tumors
from different patients (Figure S4D). Tumor individuality was
more prominent in high-grade tumors and in tumors of the
luminal B, luminal B-HER2*, or TN subtype (Figure S4E). Individ-
uality varied extensively among ER* tumors and correlated with
the percentage of ERa* cells (Figures 4L and 4M). No association
between individuality and invaded lymph nodes or distant
metastasis was detected (Figure S4F).

To explore the concept of tumor richness (Figure 4A), we
calculated the frequency of each epithelial cell cluster per sam-
ple and reported the number of clusters above 1%. All tumors
and non-tumor samples contained cells from multiple clusters
(Figure 4N). Remarkably, most tumors did not display increased
richness compared with non-tumor tissue, and tumor richness
anti-correlated with individuality (Figures 40 and 4P). In 43% of
tumor samples (62 of 144), at least 50% of all cells of the tumor
belonged to a single cluster, possibly reflecting the expansion of
a distinct cancer cell clone (Figure 4N). This cluster dominance
was observed in 58% of grade 3 tumors, 33% of grade 2 tumors,
and 35% of grade 1 tumors. Cluster dominance was observed in
51% of luminal B, 50% of luminal B-HER2*, and 67% of TN tu-
mors but only 29% of luminal A tumors. Among the 45 epithelial
cell clusters, 37 clusters (82%) comprised at least 50% of all cells
in one or more tumors (Figure 4N). Seven dominant clusters were
tumor-specific, and four displayed high phenotypic abnormality
(Figures 4B and S4G).

Analysis of ten tumors in our cohort that had not considerably
regressed despite neoadjuvant chemotherapy revealed individ-
ual phenotype compositions, indicating that different tumor cell
phenotypes had survived therapy (Figure 4Q). These included
highly abnormal tumor cells with the ERa"HER2™ phenotype
(Ep02, Ep37, and Ep24) and with the ERa*HER2* phenotype
(Ep40 and Ep41) (Figures 4B and 4Q). Two different regions of
the same tumor had been collected from four other patients. In
three cases, similar phenotype compositions were observed in
both regions. In the fourth tumor, the dominant clone was pre-
sent in both regions but at different frequencies, and one region
had a more proliferative character (5% Ki-67*) than the other
(0.6% Ki-67") (Figure S4H).

Tumor Ecosystem-Based Classification Reveals

Distinct Groups and Multiple Tumor Singletons

To exemplify a classification that considers all aspects of the tu-
mor ecosystem, we grouped all tumor and non-tumor samples in
our cohort by shared ecosystem patterns. We applied hierarchi-
cal clustering to the frequencies per sample of all epithelial,
T cell, and myeloid clusters identified in this study (Table S5;
STAR Methods). The resulting heatmap revealed three groups
containing many tumors (Tu1-Tu3), four groups containing three
or four tumors (Tu4-Tu7), 36 tumor singletons, and three groups
of non-tumor samples (N1-N3) (Figure 5A). Principal-component
analysis identified the clusters explaining the highest variability
between the different groups. Group Tu1 included 42 tumors
with high levels of specific epithelial clusters (Ep14, Ep18, and
Ep45), T cell clusters (T10, T14, and T17), and macrophage clus-
ters (M05, M10, and M12) (Figures 5A, orange rectangle, and
5B). All of these clusters were observed frequently in non-tumor

samples, except the PD-1MCTLA-4"CD38~ T cell phenotype
T14 and the CD38* MDSC phenotype M12. The nine tumors of
group Tu2 displayed high frequencies of ERa®™ cells (Ep19;
Figure 5A, red rectangle #1), T-regs (TO1), and PD-L1* TAMs
(M01 and M02) and intermediate frequencies of exhausted PD-
1MNSNCTLA-4*CD38* T cells (T09, T11, and T13; Figures 5A, red
rectangle #2, and 5B). Group Tu2 tumors had higher individuality
and phenotypic abnormality scores, more proliferating cells, PD-
L1* TAMs, and PD-1* T cells than tumors of groups Tu1 and Tu3
(Figures 5C-5G). Group Tu3 included 44 tumors with high levels
of the ERa* luminal phenotypes Ep09 and Ep14 and the
ERo™ luminal phenotypes Ep17 and Ep18 (Figure 5A, green rect-
angles #1). Group Tu3 tumors were enriched for immune cell
phenotypes T02, TO6, TO7, and M03 (Figures 5A, green rectangle
#2, and 5B), which were also common in non-tumor tissue. Strik-
ingly, groups Tu1-Tu7 were heterogeneous for clinical subtypes
and grades (Figures S5A and S5B).

All mammoplasty samples and 54% of juxta-tumoral samples
were found in group N2, indicating closely related ecosystems
(Figure 5A). Similar to non-tumor tissue, the five tumors found
in group N2 contained mainly group L1 and L2 epithelial pheno-
types, circulating T cells (T16), and tissue-resident macrophages
(MO08) (Figure 5A). All five tumors were of the luminal A subtype
and low-grade, suggesting that the tumors were phenotypically
similar to non-tumor tissue or that the tumor content was partic-
ularly low in these samples.

Many of the tumor singletons had high frequencies of PD-1"
T celland PD-L1* TAM phenotypes associated with immunosup-
pression (Figures 5A, red arrows, 5B, 5F, and 5G). Tumor single-
tons generally did not share tumor cell phenotypes, reflecting
high tumor individuality, and had higher phenotypic abnormality
scores and more proliferating cells than tumors of groups Tu1
and Tu3 (Figures 5C-5E). Luminal B-HER2*, HER2*, and TN
tumors were either part of a small tumor group or singletons
(Figure 5A).

To identify clusters and cluster combinations with the power to
distinguish a given group from all other samples, we employed a
random forest classifier (STAR Methods). The respective groups
were distinguished with an accuracy of 94% (Tu1), 83% (Tu2),
and 89% (Tu3); multiple epithelial, T cell, and macrophage clus-
ters drove the separation (Figures S5C-S5E). Thus, patterns in
both the tumor epithelium and its immunoenvironment contained
tumor-stratifying information.

Breast Tumors and Their Inmunoenvironment Are
Interwoven Entities, and Both Are Important for
Classification

Networks of tumor cell and tumor-host cell interactions drive
disease progression and are promising targets for drug interven-
tion (Marusyk et al., 2012; McAllister and Weinberg, 2010). To
systematically elucidate homotypic and heterotypic tumor and
immune cell relationships, we performed pairwise Spearman
correlation analyses of the frequencies of all cell phenotype clus-
ters in all samples (Figures 6A-6C; Table S5; STAR Methods).
Homotypic epithelial cell relationships were found between phe-
notypes from different cluster groups (Figure 6A, black rectan-
gles). Non-tumor luminal phenotypes such as Ep30 and Ep31
(group L1) were correlated, whereas tumor-specific phenotypes,
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Figure 5. Relationships in the Tumor Ecosystem Correlate with Features of Disease Progression
(A) Heatmap of frequencies of epithelial, T cell, and myeloid PhenoGraph clusters in mammoplasty, juxta-tumoral, and tumor tissues. For tumors, the subtype and

grade are indicated by color. Cosine distance and average linkage were used.

(B) Biplots of first two principal components (PCs) of cluster frequencies. Dots represent samples colored by group (top). The arrow length and direction indicate

the importance of the cluster to the PC (bottom).

(C-G) Boxplots of (C) individuality and (D) phenotypic abnormality scores and frequencies of (E) Ki-67" cells, (F) PD-L1* macrophages, and (G) PD-1* T cells

by group.

Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S5.

such as Ep09 and Ep10 (group L4) or Ep19 and Ep15 (group L2),
were often separately enriched, reflecting phenotype dominance
and tumor individuality (Figure 6A). Immunosuppressive pheno-
types T-regs (T01), PD-1"9"CTLA-4*CD38" exhausted T cells
(T09, T11, and T13), and PD-L1* TAMs (MO1, M02, and M17)
correlated with tumor cell phenotypes from L4, L5, L6, and
B1 (Figure 6B, rectangles without arrow). The frequencies of
non-tumor phenotypes in groups L1 and L2 and cluster Ep39
were inversely linked to these immunosuppressive phenotypes
(Figure 6B, rectangles marked with arrow) but correlated with
PD-1MCTLA-4-CD38~ phenotypes T07 and T18 (Figure 6B,
rectangles marked with asterisk). Relationship analysis among
tumor-associated immune cells revealed that T-regs and PD-
L1* TAM phenotypes correlated with PD-1"S"CTLA-4*CD38*
exhausted T cell phenotypes, suggesting immunosuppressive
interactions (Figure 6C, square and biaxial plots). T-regs and
PD-L1* TAMs did not or only inversely correlated with PD-1""
CTLA-4CD38™ T cell phenotypes (Figures 6C, rectangles
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marked with arrow, and S6A). Furthermore, immunosuppressive
patterns correlated with tumor phenotypic abnormality and
individuality scores, hypoxia, and proliferation (Figure 6D). We
also observed a correlation between immunosuppressive
TAMs and T cells and the abundance of ERa" cells (Figure 6D),
indicating that estrogen signaling is a shaping force in the tumor
ecosystem (Straub, 2007). The epithelial-immune relationships in
tumors differed from those of matched juxta-tumoral tissues
(Figures S6B and S6C; STAR Methods); higher numbers of ho-
motypic epithelial and T cell and heterotypic T cell-TAM relation-
ships were detected in tumors (Figures S6B-S6D).

In our ecosystem-based classification, 24% of tumors were
singletons. Because the relationship analyses indicated consid-
erable structure within the tumor immunoenvironment, we
hypothesized that singleton tumors might be grouped based
on immunoenvironmental similarities to guide patient selection
for immune-targeted therapies. Repeating the hierarchical clus-
tering using only the immune cluster frequencies resulted in three
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tumor immune groups (TIG1-TIG3) heterogeneous for tumor
subtypes. Juxta-tumoral and mammoplasty tissues grouped
together (Figure 6E). Of the previous singleton tumors, 6%
were placed into TIG1, 32% in TIG2, and 50% into TIG3. Tumors
in TIG1 were enriched for clusters M05, M10, M12, T10, T14, and
T17 (Figure 6E, black rectangle). TIG3 tumors displayed high fre-
quencies of PD-L1* TAMs (M01 and M02) and PD-1™CTLA-
4-CD38 T cells (TO7) (Figure 6E, blue rectangles #1) but low
levels of PD-1"9"CTLA-4"CD38" exhausted T cells (T09, T11,
and T13) (Figures 6E, blue rectangles #2, and S6E). In contrast,
tumors in TIG2 exhibited high frequencies of T-regs (T01), PD-
L1* TAMs, and PD-1"9"CTLA-4*CD38* exhausted T cells (Fig-
ure 6E, red rectangles). Therefore, the tumor immune groups
presented distinct relationships among T-regs, PD-1* T cells,
and PD-L1* TAM phenotypes (Figure S6E). Juxta-tumoral sam-
ples found in TIG1 and TIG3 displayed high frequencies of
PD-1MCTLA-4-CD38~ T cells or PD-L1* TAMs, unlike other
non-tumor samples (Figure 6E). In four of the five patients with
juxta-tumoral tissue in TIG1 or TIG3, lymph nodes near the tumor
had been invaded, suggesting that these phenotypes resulted
from a tumor-associated immune response.

Tumors of different subtypes, including ER* and ER™ tumors,
grouped in TIG2, raising the question whether immune cells
abundant in TIG2 were localized proximally in the tumor
ecosystem. We assessed the spatial distribution of PD-L1*
TAMs and PD-1* and PD1"CTLA-4* T cells in tissue sections
of TIG2 tumors by immunofluorescence imaging (STAR
Methods) and found these cells both in the tumor stroma and
within tumor epithelium in ER* and ER™ disease (Figures 6F
and S6F). The TIG2 tumors had higher phenotypic abnormality
scores than TIG1 and TIG3 tumors (Figure 6G), suggesting that
tumor phenotypic deviation from non-tumor tissue is associ-
ated with changes in the tumor immune landscape. TIG2 tu-
mors also had higher individuality scores than TIG1 and TIG3
tumors and revealed unique tumor cell phenotype composi-
tions (Figures 6H and 6l). All TIG2 tumors contained ERo.™ cells,
ranging from 98% to 15% of the tumor cell population. Among
ERoa~ cells, we found EMT phenotypes (Ep01, Ep02, Ep16,
Ep23-25, and Ep32) in 61% of TIG2 tumors and HLA-DR*
phenotypes (EpO1, Ep37, and Ep38) in 39% of TIG2 tumors
(Figure 6l). ERa" phenotypes were mainly from groups L4
(Ep07-Ep11) and L5 (Ep26-Ep29) and co-expressed PRB,
HER2, and AR with high levels of pro-survival BCL-2 and
Survivin. Thus, in addition to an immunosuppressive environ-
ment, TIG2 tumor ecosystems contained multiple tumor cell
populations with the potential to escape common cancer
therapies.

DISCUSSION

Communication between heterogeneous tumor cells, infiltrating
T cells, and macrophages shapes the breast cancer ecosystem,
with an effect on disease progression and clinical outcome (Mar-
usyk et al., 2012; Quail and Joyce, 2013). We constructed an
extensive single-cell atlas of human breast cancer ecosystems
by large-scale mass cytometry profiling of 26 million cells from
144 tumor samples, 46 juxta-tumoral samples, and tissue from
four reduction mammoplasties. This atlas reveals the vast pheno-
typic diversity of mammary epithelial and immune cells, pheno-
typic abnormalities of tumor cells, and tumor individuality and
highlights homotypic and heterotypic tumor-immune cell relation-
ships, enabling ecosystem-based patient classification.

Most cases in our study were luminal ER* breast cancers.
Despite a generally favorable prognosis, about 30% of patients
with ER* disease develop therapy resistance and metastases
(Reinert and Barrios, 2015). We found that tumor-derived epithe-
lial cells were phenotypically much more diverse than cells from
non-tumor tissue. Tumors of all clinical subtypes displayed strik-
ing individuality in cellular phenotypic composition. These find-
ings might underlie the differential treatment responses and
relapse rates among ER* breast cancer patients. Although mul-
tiple tumor cell phenotypes co-existed in all tumor ecosystems,
frequently one phenotype was dominant, possibly reflecting the
expansion of the fittest tumor subclone, as suggested by geno-
mics (Nik-Zainal et al., 2012). Phenotype dominance can be
particularly important for disease progression when associated
with resistance, such as the dominant ERa."HER2~Survivin™9"
phenotypes we found in tumors resistant to neoadjuvant chemo-
therapy. Phenotypic abnormality scores were higher for tumor
cells of luminal B, luminal B-HER2*, TN, and grade 3 tumors
than of luminal A and lower grades. Given that HER2* and TN tu-
mors were underrepresented in our cohort, we expect that
expanded analyses of these subtypes will also reveal tumor
cell heterogeneity and tumor individuality, as apparent in ER*
tumors.

Single-cell RNA sequencing of a few tumors suggested that
tumor-associated T cells and myeloid cells are phenotypically
diverse (Azizi et al., 2018; Chung et al., 2017), which is supported
by our analysis of a large cohort. We found that PD-1* T cells and
PD-L1* TAMs were common in all breast cancer subtypes (Buis-
seret et al., 2016). Receptors relevant to T cell exhaustion (PD-1,
CTLA-4, and TIM-3) and activation (HLA-DR and CD38) as well
as CD38, pro-tumor (CD204, CD206, and CD163), and anti-tu-
mor TAM markers (CD169) were heterogeneously expressed,
reminiscent of findings in breast cancer and ccRCC (Azizi

(D) Spearman correlation analysis of T cell and myeloid cluster frequencies with phenotypic abnormality and individuality scores and frequencies of ERa.*, CA9™*,

and Ki-67* cells in tumors.

(E) Heatmap of frequencies of T cell and myeloid clusters in all samples by hierarchical clustering using cosine distance and average linkage. For tumors, the
subtype, grade, and three main groups, Tu1-Tu3, from Figure 5A are indicated by color.
(F) Pseudo-bright-field images of immunofluorescence staining of the indicated tumor samples. Arrowheads indicate PD-1*CTLA-4* T cells (left) or PD-L1* TAMs

(right). Scale bar, 25 um.

(G and H) Boxplots of (G) phenotypic abnormality and (H) individuality scores for tumors in tumor immune groups TIG1-TGI3.

(l) Cluster frequency map for tumors in TIG2.

Tumors and epithelial clusters were sorted by increasing phenotypic abnormality score. A cutoff of p < 0.01 was used in (A)-(D). Wilcoxon rank-sum test was

used for (G) and (H). *p < 0.05, **p < 0.01, **p < 0.001. See also Figure S6.
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et al., 2018; Cheuvrier et al., 2017). Recent work indicated that
PD-1" T cells follow a gradient of dysfunction ranging from low
to high exhaustion (Li et al., 2019; Sade-Feldman et al., 2018;
Wherry and Kurachi, 2015). Our data confirmed a continuum of
T cell exhaustion states linked to increasing PD-1 levels. We
found different combinations of immune checkpoint molecules
associated with high PD-1 expression in both CD4* and CD8"*
T cell populations and identified CD38 as a marker of T cell
exhaustion in breast cancer. Immunosuppressive T cell and
TAM phenotypes correlated with tumor-specific luminal ERa*
and ERa~ phenotypes that expressed specific receptor tyrosine
kinases and pro-survival proteins. Because interactions be-
tween tumor cells, T cells, and TAMs are promising targets for
therapy (Quail and Joyce, 2013), follow-up experiments should
elucidate the functional roles of distinct tumor and immune cell
populations in breast cancer ecosystems.

Our data revealed that the frequency of ERa* cells in ER*
tumors was linked to tumor individuality. In luminal B tumors,
the frequency of ERa* cells correlated with PD-L1* TAMs and
exhausted T cell phenotypes, supporting the notion that hor-
mone receptor signaling shapes the tumor ecosystem (Straub,
2007). The success of immune checkpoint therapy in ER* breast
cancer patients has been limited (Shih et al., 2014). Here we
showed that 18% of luminal B tumor samples exhibited patterns
of strong T cell exhaustion akin to ER™ tumors, suggesting that
some ER™ patients could benefit from neoadjuvant or early
adjuvant anti-PD-1 and anti-PD-L1 therapy targeting the primary
tumor (Wein et al., 2018). Our study identified patterns within the
tumor and immune ecosystem that are tumor-stratifying inde-
pendent of subtype and grade. Therefore, assessing the entire
cancer ecosystem should be considered for the design of preci-
sion therapies targeting the tumor and its immunoenvironment
and for patient selection for immunotherapy clinical trials.
Further studies are needed to confirm this suggestion.

Our mass cytometry approach has limitations. First, antibody
choices might bias phenotyping. Antibodies in our tumor panel
were selected based on studies delineating mammary epithelial
cell states, gene expression, and protein signatures enriched in
breast cancer subtypes (Neve et al., 2006; Parker et al., 2009;
Perou et al., 2000; Santagata et al., 2014). The immune anti-
body selections were based on our recent ccRCC immune
atlas (Chevrier et al., 2017). All antibodies were thoroughly vali-
dated. Second, tissue dissociation into single-cell suspensions
potentially alters cell surface molecules. The recapitulation of
known cell phenotypes using our panels indicates small effects
(Chevrier et al., 2017). Third, data-driven clustering is sensitive
to the choice of clustering parameters. PhenoGraph is a repro-
ducible single-cell clustering method (Weber and Robinson,
2016) and yielded epithelial and immune clusters that recapitu-
lated known mammary epithelial, T cell, and TAM phenotypes.
The spatial context and functional roles of these phenotypes
must be addressed in additional experiments (Angelo et al.,
2014; Giesen et al., 2014). Fourth, although our tumor samples
were of about 0.125 cm® volume, which is much larger than vol-
umes typically analyzed in pathology studies, tumor regions
might differ. Fifth, our ecosystem-based patient grouping is a
function of the measured markers and the patient cohort.
Because our samples were collected prospectively, relation-

ship analysis to clinical outcome or treatment response was
not possible.

New treatment approaches are needed to increase the suc-
cess of breast cancer precision medicine. A first step is to
comprehensively describe the complex cellular and phenotypic
diversity of tumor ecosystems and the relationships among its
components for a large number of patients. Here we provide
such an atlas of breast cancer ecosystems. This atlas will be a
valuable resource for future research to identify clinically relevant
cell phenotypes and relationships in the tumor ecosystem for pa-
tient stratification and precision medicine applications.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Antibodies used for mass cytometry
AKT (C67E7) - purified
Anti-rabbit I9G (polyclonal) - purified
AR (D6F11) - purified

BCL-2 (100) - purified

c-MET (D1C2) - purified

c-MYC (D84C12) - purified

CAQ9 (polyclonal) - purified
CD11b (M1/70) - purified

CD11c (Bu15) - purified

CD123 (6H6) - purified

CD14 (RMO52) - purified

CD15 (HI98) - purified

CD16 (3G8) - purified

CD163 (GHI/61) - purified

CD169 (7-239) - purified
CD192/CCR2 (K036C2) - purified
CD197/CCR7 (G043H7) - purified
CD20 (H1(FB1)) - purified

CD204 (351615) - purified
CD206 (15-2) - purified

CD24 (MLS5) - purified

CD25 (M-A251) - purified
CD274/PD-L1 (E1L3N) - purified
CD278/ICOS (C398.4A) - purified
CD279/PD-1 (EH12.2H7) - purified
CD8 (UCHTH1) - purified

CD31 (HC1/6) - purified

CD32 (FUN-2) - purified

CD36 (5-271) - purified

CD38 (HIT2) - purified

CD4 (RPA-T4) - purified

CD44 (IM7) - purified

CD45 (HI30) - purified

CD45RA (HI100) - purified

CD49f (GoH3) - purified

CD64 (10.1) - purified

CD68 (KP1) - purified

CD68 (Y1/82A) - purified

CD7 (M-T701) - purified

CD86 (233(FUN-1)) - purified
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Cell Signaling Technologies
Vector Labs

Cell Signaling Technologies
Biolegend

Cell Signaling Technologies
Cell Signaling Technologies
R&D Systems

Biolegend

Biolegend

Biolegend

Beckman Coulter
Biolegend

Biolegend

Biolegend

Biolegend

Biolegend

Biolegend

BD Biosciences

R&D Systems

Biolegend

BD Biosciences

Biolegend

Cell Signaling Technologies
Biolegend

Biolegend

Biolegend

EMD Millipore

Biolegend

Biolegend

Biolegend

Biolegend

BD Biosciences

Biolegend

Biolegend

Biolegend

Biolegend

Biolegend

Biolegend

BD Biosciences

BD Biosciences

Cat# 4691; RRID:AB_915783
Cat# Al-1000; RRID:AB_2336193
Cat# 5153; RRID:AB_10692774
Cat# 658702; RRID:AB_2562959
Cat# 8198; RRID:AB_10860590
Cat# 5605; RRID:AB_1903938
Cat# AF2188; RRID:AB_416562
Cat# 101202; RRID:AB_312785
Cat# 337221; RRID:AB_2562834
Cat# 306002; RRID:AB_314576
Cat# A22331; RRID:AB_10639528
Cat# 301902; RRID:AB_314194
Cat# 302002; RRID:AB_314202
Cat# 333602; RRID:AB_1088991
Cat# 346002; RRID:AB_2189031
Cat# 357202; RRID:AB_2561851
Cat# 353202; RRID:AB_10945157
Cat# 555677; RRID:AB_396030
Cat# MAB2708; RRID:AB_2235696
Cat# 321112; RRID:AB_571921
Cat# 555426; RRID:AB_395820
Cat# 356102; RRID:AB_2561752
Cat# 13684; RRID:AB_2687655
Cat# 313502; RRID:AB_416326
Cat# 329902; RRID:AB_940488
Cat# 300402; RRID:AB_314056
Cat# CBL468-K; RRID:AB_1586934
Cat# 303202; RRID:AB_314334
Cat# 336215; RRID:AB_2563745
Cat# 303502; RRID:AB_314354
Cat# 300516; RRID:AB_314084
Cat# 550538; RRID:AB_393732
Cat# 304002; RRID:AB_314390
Cat# 304102; RRID:AB_314406
Cat# 313614; RRID:AB_893371
Cat# 305002; RRID:AB_314486
Cat# 916104; RRID:AB_2616797
Cat# 333802; RRID:AB_1089058
Cat# 555359; RRID:AB_395762
Cat# 555655; RRID:AB_396010
(Continued on next page)



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
CD8a (RPA-T8) - purified Biolegend Cat# 301002; RRID:AB_314120
CD93 (R139) - purified eBioscience Cat# 14-0939-82; RRID:AB_891508

Cleaved CASPASE-3 (C92-605) - purified
Cleaved PARP-1 (F21-852) - purified
CTLA-4 (L3D10) - purified
Cyclin B1 (GNS-11) - purified
E-CADHERIN (24E10) - purified
E-CADHERIN (67A4) - purified
EGFR (EP38Y) - purified
EpCAM (9C4) - purified

ERa (EP1) - purified

EZH2 (D2C9) - purified

FAP (polyclonal) - purified
FOXP3 (236A/E7) - purified
H3K27me3 (C36B11) - purified
HER2 (3B5) - purified

HLA-DR (L243) - purified

K14 (polyclonal) - purified

K5 (EP1601Y) - purified

K7 (RCK105) - purified

K8/18 (C51) - purified

Ki-67 (8D5) - purified

P53 (EPR17343) - purified

Pan Keratin (AE1) - purified
Pan Keratin (AE3) - purified
PRB (YR85) - purified

PTEN (138G6) - purified
SLAMF7 (162.1) - purified
SMA (1A4) - purified

SURVIVIN (71G4B7) - purified

BD Biosciences

BD Biosciences

Biolegend

BD Biosciences

Cell Signaling Technologies
Biolegend

Abcam

Biolegend

Epitomics

Cell Signaling Technologies
R&D Systems
ThermoFisher

Cell Signaling Technologies
BD Biosciences

Biolegend

ThermoFisher

Abcam

BD Biosciences

Cell Signaling Technologies
Cell Signaling Technologies
Abcam

EMD Millipore

EMD Millipore

Abcam

Cell Signaling Technologies
Biolegend

Abcam

Cell Signaling Technologies

Cat# 559565; RRID:AB_397274
Cat# 552596; RRID:AB_394437
Cat# 349902; RRID:AB_10642827
Cat# 554179; RRID:AB_395290
Cat# 3195; RRID:AB_10694492
Cat# 324102; RRID:AB_756064
Cat# ab52894; RRID:AB_869579
Cat# 324202; RRID:AB_756076
Cat# AC-0015; RRID:AB_10704040
Cat# 5246; RRID:AB_10694683
Cat# AF3715; RRID:AB_2102369
Cat# 14-4777-82; RRID:AB_467556
Cat# 97383; RRID:AB_2616029
Cat# 554299; RRID:AB_395352
Cat# 307602; RRID:AB_314680
Cat# PA5-16722; RRID:AB_10980222
Cat# ab52635; RRID:AB_869890
Cat# 550507; RRID:AB_2134456
Cat# 4546; RRID:AB_2134843
Cat# 9449; RRID:AB_2715512

Cat# ab179477; RRID:AB_2737134
Cat# MAB1612; RRID:AB_2132794
Cat# MAB1611; RRID:AB_2134409
Cat# ab32085; RRID:AB_777452
Cat# 9559; RRID:AB_390810

Cat# 331802; RRID:AB_961330
Cat# ab8207; RRID:AB_306356
Cat# 2808; RRID:AB_10691694

TIM-3 (F38-2E2) - purified Biolegend Cat# 345035; RRID:AB_2566086
VIMENTIN (EPR3776) - purified Abcam Cat# ab92547; RRID:AB_10562134
Antibodies used for immunofluorescence

CD3e (LN10) Leica Cat# NCL-L-CD3-565; RRID:AB_563541
CD68 (KP1) eBioscience/ThermoFisher Cat# 14-0688-82; RRID:AB_11151139

CTLA-4 (BSB-88)

PD-1 (D4W2J)

PD-L1 (E1L3N)

Pan Keratin (h-240)

EpCAM (EPR20532-225)

Anti-mouse 1gG (min X reactivity), HRP-
conjugated (polyclonal)

Anti-rabbit IgG (min X reactivity), HRP-
conjugated (polyclonal)

Anti-goat IgG (min X reactivity), HRP-
conjugated (polyclonal)

BIOSB

Cell Signaling Technologies
Cell Signaling Technologies
Santa Cruz

Abcam
JacksonlmmunoReseach

JacksonlmmunoReseach

JacksonlmmunoReseach

Cat# BSB2884; RRID:AB_2762365
Cat# 86163S; RRID:AB_2728833
Cat# 13684S; RRID:AB_2687655
Cat# sc-15367; RRID:AB_2134438
Cat# ab223582; RRID:AB_2762366
Cat# 715-035-151; RRID:AB_2340771

Cat# 711-035-152; RRID:AB_10015282

Cat# 705-035-147; RRID:AB_2313587

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Biological Samples
Breast cancer and adjacent non-tumor University Hospital Basel, University
tissue samples Hospital Zurich, Patient’s Tumor Bank

of Hope (PATH), St. Johannes Hospital

Dortmund and Institute of Pathology at

Josefshaus, University Hospital Giessen

and Marburg, Marburg site
Reduction mammoplasty samples University Hospital Zurich
Peripheral blood mononuclear cells Zurich Blood Transfusion Service N/A
(PBMCs)
Chemicals, Peptides, and Recombinant Proteins
4’,6 diamidine-2-phenylindole (DAPI) ThermoFischer Cat# D1306
Antibody Stabilizer PBS Candor Bioscience Cat# 131 050
Bis(2,2'-bipyridine)-4’-methyl-4- Sigma Aldrich Cat# 96631
carboxybipyridine-ruthenium-N-
succidimyl ester-bis(hexafluorophosphate)
(®Ru, %192Ry, 104Ry)
Bismuth trichloride (*°°Bi) Sigma Aldrich Cat# 450723
Bromoacetamidobenzyl-EDTA (BABE) Dojindo Laboratories Cat# B437-10
Cisplatin Fluidigm Cat# 201064
DMSO Sigma Aldrich Cat# D2438
EDTA StemCell Technologies, Inc. Cat# EDS-100G
EQ™ Four Element Calibration Beads Fluidigm Cat# 201078
FcR Blocking Reagent, human Miltenyi Biotech Cat# 130-059-901
Indium (*%In, 1"%In) Fluidigm N/A
Iridium (*®'Ir, *%3Ir) Fluidigm Cat# 201192A
Lanthanide (lll) metal isotopes as chloride salts Fluidigm N/A
MACS Tissue Storage Solution Miltenyi Biotech Cat# 130-100-008
Magne Protein A Beads Promega Cat# G8781
Magne Protein G Beads Promega Cat# G7471
Maleimido-mono-amide-DOTA (mDOTA) Macrocyclics Cat# B-272
Palladium ('°°Pd, '°6Pd, °8pd, '1°Pd) Fluidigm N/A
Paraformaldehyde Electron Microscopy Sciences Cat# 15710
ProLong® Diamond Antifade Mountant Thermo Fisher Cat# P36961
Rhodium trichloride ('°*Rh) Sigma Aldrich Cat# 450286
Saponin Sigma Aldrich Cat# S7900
Trilogy 20x Concentrate CellMarque Cat# 920P-06
Yitrium (29Y) Sigma Aldrich N/A
Critical Commercial Assays
Opal 7-Color IHC Kit PerkinEImer Cat# NEL821001KT
Tumor Dissociation Kit, human Miltenyi Biotech Cat# 130-095-929
Maxpar X8 Multimetal Labeling Kit Fluidigm Cat# 201300
Deposited Data
Mass cytometry data This paper Mendeley Data https://doi.org/10.17632/

gb83sywsijc.1

Immunofluorescence images This paper Mendeley Data https://doi.org/10.17632/

gb83sywsijc.1
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Continued

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Experimental Models: Cell Lines

MCF-10A
MDA-MB-134-VI
MDA-MB-231
MDA-MB-453
SK-BR-3
ZR-75-1
Fibroblasts

American Type Culture Collection (ATCC)
American Type Culture Collection (ATCC)
American Type Culture Collection (ATCC)
American Type Culture Collection (ATCC)
American Type Culture Collection (ATCC)
American Type Culture Collection (ATCC)

Gift from the laboratory of Prof. Silvio
Hemmi at the University of Zurich

Cat# CRL-10317
Cat# HTB-23
Cat# HTB-26
Cat# HTB-131
Cat# HTB-30
Cat# CRL-1500

Software and Algorithms

CATALYST

circlize (R package) version 0.4.4
Concatenation tool

Cytobank

Fiji

InForm Cell Analysis

MATLAB R2018a Neural Network Toolbox
Normalizer

PhenoGraph

Python
R 3.4.1
t-SNE

Chevrier et al., 2018

Gu et al., 2014
Cytobank, Inc

Kotecha et al., 2010
Schindelin et al., 2012
PerkinElmer
MathWorks, Inc., 2018
Finck et al., 2013

Levine et al., 2015

Python Software
R Core Team, 2016
Van Der Maaten and Hinton, 2008

http://bioconductor.org/packages/
release/bioc/htmIl/CATALYST.html

https://github.com/jokergoo/circlize

https://support.cytobank.org/hc/en-us/
articles/206336147-FCS-file-
concatenation-tool

https://www.cytobank.org/
https://imagej.net/Welcome
http://www.perkinelmer.com
https://www.mathworks.com/

https://github.com/nolanlab/bead-
normalization/releases

https://github.com/jacoblevine/
PhenoGraph

https://www.python.org/
https://www.R-project.org
https://github.com/jkrijthe/Rtsne

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Bernd
Bodenmiller (bernd.bodenmiller@imls.uzh.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical samples

Primary mammary gland tissue and health-related data were collected after obtaining written informed consent from patients at the
University Hospital Basel (Switzerland), the University Hospital Zurich (Switzerland), and in collaboration with the Patient’s Tumor
Bank of Hope (PATH, Germany) at the breast cancer centers at St. Johannes Hospital Dortmund and Institute of Pathology at Josef-
shaus (Germany) and the University Hospital Giessen and Marburg, Marburg site (Germany). Tissue and health-related data were
collected under approval of the Ethics Committee Northwest/Central Switzerland (#2016-00067), the Ethics Committee Zurich
(#2016-00215), and the faculty of medicine ethics committee at Friedrich-Wilhelms-University Bonn (#255/06). Certified pathologists
with extensive experience in preparation and analysis of breast cancer surgery resectates for diagnostics and research performed
pathological staging for the tumor cohort in this study. Tumor histology, grading, and expression assessment of standard clinical
biomarkers (ER, PR, HER2, Ki-67) were determined at the time of diagnostic pathological work-up according to the current
ASCO/CAP recommendations (Rakha et al., 2014) and are reported in Table S2. Areas of tumor in the surgery resectates were
identified macroscopically prior to sample-taking or microscopically in fast frozen section analyses. Part of the tumor was formalin
cross-linked, embedded in paraffin, and stained with hematoxylin and eosin and if necessary with standard immunohistochemistry
(IHC) procedures as part of standard diagnostics. For mass cytometry analysis, a tissue sample of about 5x5x5 mm (about 0.125 cm?®
volume) was taken prior to paraffin embedding, thus the tumor area processed for mass cytometry analysis was spatially separate
from the tumor area stained for prognostic and predictive biomarkers. However, the pathologists selected a research sample for this
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study that was macroscopically representative of the whole tumor based on many years of experience. From the clinical perspective,
the presence of DCIS is of less importance for diagnosis than detection of tumor invasiveness, and invasive tumor tissues were cho-
sen as tumor-representative samples for this study. It is likely that DCIS surrounding the tumor was also sampled and possible that
some DCIS was present in non-cancerous tissue juxtaposed to the tumor. This might underlie the grouping of some juxta-tumoral
tissue samples with their matched tumor in Figure 5A. Since the specific tissue areas used in this study could not be examined
by frozen section or hematoxylin and eosin because they were dissociated during the mass cytometry workflow, we unfortunately
do not know whether and how much DCIS was present in each of the samples. We have an indication based on the pathological
histology analysis; see notes in Table S2. It is highly unlikely, however, that extensive areas of DCIS in the non-cancerous juxta-tu-
moral tissue were overlooked preoperatively, since the patients underwent extensive imaging of the breast before surgery, and no
abnormalities were noted. The small differences between the percentages of cells positive for ER, PR, HER2, and Ki-67 as assessed
by pathological IHC compared to the mass cytometry analysis (Figures S1l and S1J) are likely caused by usage of differences in
antibody clones, in assay sensitivities, and in sampled tumor volumes (mass cytometry, large volume about 0.125 cm?®; IHC,
small volume). Tumor subtype definitions in this study were as follows: Luminal A (ER* and/or PR*, HER2", Ki-67* < 20%), Luminal
B (ER" and/or PR*, HER2", Ki-67* > 20%), Luminal B-HER2* (ER* and/or PR*, HER2"), HER2" (ER"PR'HER2"), and triple negative
(TN; ER'PR'HER2"). Some tumor ecosystems grouped together with juxta-tumoral and mammoplasty samples in Figure 5A. These
were of Luminal A subtype and low grade, possibly reflecting that the tumor was phenotypically similar to non-cancerous tissue or
that the tumor content was particularly low in these samples. Ten patients had received neoadjuvant (NA) chemotherapy prior to sam-
ple collection for this study including one of 54 Luminal A, five of 71 Luminal B, two of six Luminal B-HER2", and two of six TN patients
(Table S2). We did not see any significant difference between tumors from NA-treated patients and tumors from untreated patients in
terms of cell type frequency, epithelial and immune phenotype frequencies, phenotypic abnormality, or individuality. For four pa-
tients, two different areas of the same tumor had been sampled.

Cell lines

Human mammary epithelial cell lines were obtained from the American Type Culture Collection (ATCC) and cultured according to
ATCC recommendations. Cell lines included MCF-10A, MDA-MB-134-VI, MDA-MB-231, MDA-MB-453, SK-BR-3, and ZR-75-1.
Fibroblasts were a gift from the laboratory of Prof. Silvio Hemmi at the University of Zurich and were cultured in DMEM medium
(Sigma Aldrich) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, and 10% fetal bovine serum (FBS). Peripheral blood
mononuclear cells (PBMCs) from healthy donors were obtained from the Zurich Blood Transfusion Service and were isolated by
histopaque (Sigma Aldrich) density gradient centrifugation.

METHOD DETAILS

Tissue preparation

Following surgical resection, fresh tissue samples were immediately transferred to pre-cooled MACS Tissue Storage Solution
(Miltenyi Biotec) and were shipped at 4°C. Tissue processing was completed within 24 hours of collection. For dissociation, the tissue
was minced using surgical scalpels and further disintegrated using the Tumor Dissociation Kit, human (Miltenyi Biotech) and the
gentleMACS Dissociator (Miltenyi Biotech) according to manufacturer’s instructions. The resulting single-cell suspension was filtered
sequentially through sterile 70-pm and 40-pm cell strainers. The cell suspension was stained for viability with 25 uM cisplatin (Enzo
Life Sciences) in a 1-min pulse before quenching with 10% FBS. Cells were then fixed with 1.6% paraformaldehyde (PFA, Electron
Microscopy Sciences) for 10 min at room temperature and stored at —80°C.

Mass-tag cellular barcoding

To minimize inter-sample staining variation, we applied mass-tag barcoding to fixed cells (Zunder et al., 2015). A 126-well barcoding
scheme composed of unique combinations of four out of nine barcoding metals was used for this study; metals included palladium
(1°°Pd, "°Pd, 198pd, ""°Pd, Fluidigm) conjugated to bromoacetamidobenzyl-EDTA (Dojindo) as well as indium (''3In and ''®In,
Fluidigm), yttrium, rhodium, and bismuth (%Y, 1°®Rh, 2°°Bj, Sigma Aldrich) conjugated to maleimido-mono-amide-DOTA (Macrocy-
clics). The concentrations were adjusted to 20 nM (3°°Bi), 100 nM (1°5-11%pd, ®|n, 89Y), 200 nM ('*3In), or 2 uM (*°®Rh). Cells were
randomly distributed across two 96-well plates, and about 0.3 million cells per well were barcoded using a transient partial
permeabilization protocol. Cells were washed once with 0.03% saponin in PBS (Sigma Aldrich) prior to incubation in 200 pl barcoding
reagent for 30 min at room temperature. Cells were then washed four times with cell staining medium (CSM, PBS with 0.3% saponin,
0,5% bovine serum albumin (Sigma Aldrich) supplemented with 2 mM EDTA (StemCell Technologies, Inc.) and pooled for antibody
staining. Two 126-well barcoding plates, with a set of standard samples on each plate, were used for antibody staining with the tumor
cell-centric and the immune cell-centric panels (Tables S3 and S4, respectively).

Antibodies and antibody labeling

All antibodies and corresponding clone, provider, and metal tag are listed in Tables S3 and S4. Target specificity of the antibodies
was confirmed in our laboratory. Antibodies were obtained in carrier/protein-free buffer or were purified using the Magne Protein A or
G Beads (Promega) according to manufacturer’s instructions. Metal-labeled antibodies were prepared using the Maxpar X8
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Multimetal Labeling Kit (Fluidigm) according to manufacturer’s instructions. After conjugation, the protein concentration was deter-
mined using a Nanodrop (Thermo Scientific), and the metal-labeled antibodies were diluted in Antibody Stabilizer PBS (Candor
Bioscience) to a concentration of 200 or 300 pg/ml for long-term storage at 4°C. Optimal concentrations for antibodies were deter-
mined by titration, and antibodies were managed using the cloud-based platform AirLab as previously described (Catena
et al., 2016).

Antibody staining and cell volume quantification

Antibody staining was performed on pooled samples after mass-tag cellular barcoding. The pooled samples were incubated with
FcR Blocking Reagent, human (Miltenyi Biotech) for 10 min at 4°C and then washed once with CSM. For staining with the immune
cell-centric antibody panel (Table S3), cells were incubated for 45 min at 4°C followed by three washes with CSM. For staining
with the tumor cell-centric antibody panel (Table S4), purified rabbit anti-human ERea (Epitomics) was applied at 3 pg/ml for
45 min at 4°C, and then samples were washed twice with CSM. Goat anti-rabbit IgG (Vector Labs) conjugated to '®*Ho was then
applied at 0.25 ug/ml for 45 min at 4°C followed by two washes with CSM. The sample was then stained with the remaining antibodies
of the panel (Table S4) for 45 min at 4°C followed by three washes with CSM. For mass-based cell detection, cells were stained with
500 uM nucleic acid intercalator iridium (***Ir and "*®Ir, Fluidigm) in PBS with 1.6% PFA (Electron Microscopy Sciences) for 1 h at
room temperature or overnight at 4°C. Cells were washed once with CSM and once with 0.03% saponin in PBS. For cell volume
quantification, cells were stained with 12.5 pg/ml Bis(2,2’'-bipyridine)-4’-methyl-4-carboxybipyridine-ruthenium-N-succidimyl
ester-bis(hexafluorophosphate) (°°Ru, 981°2Ru, '®*Ru, Sigma Aldrich) in 0.1 M sodium hydrogen carbonate (Sigma Aldrich) for
10 min at room temperature as previously described (Rapsomaniki et al., 2018). Cells were then washed twice with CSM, twice
with 0.03% saponin in PBS, and twice with doubly distilled water (ddH,0). For mass cytometry acquisition, cells were diluted to
0.5 million cells/ml in ddH,O containing 10% EQ™ Four Element Calibration Beads (Fluidigm) and filtered through a 40-um filter-
cap FACS tube. Samples were placed on ice and introduced into the Helios upgraded CyTOF2 (Fluidigm) using the Super Sampler
(Victorian Airship) introduction system; data were collected as .fcs files.

Gadolinium contamination test

Some patients were scanned by magnetic resonance imaging for medical diagnosis and received a gadolinium-based contrast
agent. A small aliquot of each sample was tested for the presence of gadolinium after fixation using mass cytometry. Gadolinium-
positive cells were removed from data analysis by gating (Figure S1C).

Immunofluorescence imaging

We selected formalin-fixed paraffin embedded (FFPE) sections of breast cancer resectates for which mass cytometry analysis has
been performed on a different region of the same tumor. FFPE sections were stained using the Opal 7-Color IHC Kit (PerkinElmer)
according to manufacturer’s protocol. Briefly, slides were deparaffinized, rehydrated, and antigen retrieved using Trilogy buffer
(CellMarque) by autoclaving for 15 min. Slides were treated with 3% H,O, for 15 min, washed, and blocked using 4% BSA/PBS/
0.1% Triton X-100 (all from Sigma). Primary antibodies and consecutive HRP-conjugated secondary antibodies (Table S6) were
diluted in 1% BSA/PBS/0.1% Triton X-100. Primary antibodies were incubated over night at 4°C and secondary antibodies were
incubated for 1 h at room temperature. Slides were then incubated in Amplification diluent containing a tyramide-conjugated fluo-
rophore for 10 min. Prior to the next primary antibody incubation, the slides were heated for 10 min in 10 mM citric acid, pH 6.0
at 95°C to strip the antibodies of the previous staining round. The protocol was repeated from the blocking step until a total of six
markers were co-stained. After the last staining round, the slides were washed, incubated with 0.5 ug/ml 4’,6 diamidine-2-phenyl-
indole (DAPI; ThermoFischer) for 5 min, washed again, and mounted using Prolong Diamond medium (ThermoFischer). The following
set of markers was analyzed for each sample (indicated in the order of staining): CTLA-4, PD-L1, PD-1, CD68, CD3e, PanK+EpCAM.
Slides were scanned using the multispectral imaging system Vectra 3.0 (PerkinElmer), and multispectral images were analyzed using
the InForm Cell Analysis software (PerkinElmer). Images were processed in Fiji and contrast was enhanced to improve visibility.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass cytometry data preprocessing

Mass cytometry data were concatenated using the .fcs File Concatenation Tool (Cytobank, Inc.), normalized using the MATLAB
version of the Normalizer tool (Finck et al., 2013), and debarcoded using the CATALYST R/Bioconductor package (Chevrier et al.,
2018). Debarcoded files were compensated for channel crosstalk using single-stained polystyrene beads as previously described
(Chevrier et al., 2018). The compensated .fcs files were uploaded to the Cytobank server (Cytobank, Inc.) for manual gating on pop-
ulations of interest. For Figure 1, manual gates were set to exclude nonspecific background signal and cisplatin-positive dead cells
(Figure S1C). The resulting population was exported as .fcs files and loaded into R (R Core Team, 2016) for downstream analysis.
Sample duplicates that were used to ensure high data quality between two barcoding plates (Figure S1D) were concatenated for
downstream analysis.
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Dimensionality reduction and clustering

For dimensionality reduction visualizations using the t-SNE algorithm (Van Der Maaten and Hinton, 2008), signal intensities
(dual counts) per channel were arcsinh-transformed with a cofactor of 5 (counts_transf = asinh(x/5)). The R t-SNE package for
Barnes-Hut implementation was used. For marker expression level visualization on t-SNE plots, the expression was normalized
between 0 and 1 to the 99" percentile and the top percentile was set to 1.

Exploration of batch effects

To assess the presence of batch effects in the data originating from possible confounding factors related to, for example,
sample origin or sample preparation, an approach based on principal component analysis was followed, similar to the one
proposed previously for high-throughput data analysis (Leek et al., 2010). Initially, 1000 cells from each sample were randomly
selected and then the principal components (PC) of the multidimensional protein abundance measurements of these cells were
computed. To assess how much of the variability in the PCs was due to the actual protein measurements, the values of Spearman’s
correlation coefficients between the two first PCs (in total 61% of variance explained) and all protein measurements were computed
(Figure S1F); values were highly correlated. To address the presence of possible batch effects, the same process was repeated using
all possible confounders (namely the operator, barcoding plate, hospital of origin, date of sample receipt, and transport time). This
time the computed correlation values were negligible (Figure S1G), indicating absence of batch effects related to sample origin or
processing.

Epithelial cell selection and immune cell type selection

To generate an in-depth phenotypic characterization of epithelial and immune cells, we applied PhenoGraph (Levine et al., 2015), a
state-of-the-art graph based clustering algorithm able to partition high-dimensional data into groups. Since the original data size was
prohibitive in terms of computational resources, a combined approach coupling artificial neural networks (ANNs) and PhenoGraph
was employed. We first created a representative cell pre-selection using a custom down sampling approach to address the discrep-
ancies in total numbers of cells per sample: for samples with less than 1000 cells, all cells were considered; for samples between 1000
and 2000 cells, half of the cells were randomly sampled; for samples between 2000 and 5000 cells, 30% of the cells were randomly
selected; and for all other samples, 20% of the cells were randomly selected. This down sampling scheme resulted in a dataset of
approximately 700,000 cells. This process balanced the discrepancies in terms of number of cells per sample, while at the same time
adequately representing all samples. All cells were clustered using PhenoGraph, and the clusters were labeled as epithelial based on
expression of one or more of the following epithelial markers: EpCAM, E-Cadherin, pan cytokeratin, K5, K7, K8, K18, and/or K14
(Figure S1M). All other cells were labeled as non-epithelial. This labeled dataset was used as input to train an ANN classifier consisting
of one hidden layer of 20 neurons (with a hyperbolic tangent sigmoid transfer function) and one output layer of one neuron (with a
softmax transfer function). The dataset was randomly split into training (50%), validation (25%), and test (25%) sets. The ANN
was trained using the scaled conjugate gradient method (Mgller, 1993), and its performance was evaluated using a standard
cross-entropy function. Training was terminated upon convergence after 254 epochs, when the ANN’s performance failed to improve
for 10 consecutive validation runs. The ANN’s performance on the test set indicated very high concordance with the expert labeling
with an overall accuracy of 99.5% (true positive rate of 99.1%, true negative rate of 99.6%). The ANN was then applied to the remain-
ing data. It successfully classified a total of approximately 4 million cells as epithelial. The same down sampling scheme as above
was employed to limit their number to a computationally manageable subset of approximately 850,000 cells, which were subse-
quently used for all downstream analysis. The same process was used for all immune cells (CD45" cells, Figure S2A), but this
time, the cells were assigned to belong to eight different cluster types (T cells, natural killer cells, granulocytes, B cells, plasma cells,
plamacytoid dendritic cells, myeloid cells, and basophils) based on expression of immune cell type-specific markers (Figure S2D).
The same ANN settings were used, apart from the output layer, which consisted of eight nodes. The ANN’s performance on the
test set yielded an accuracy of 99.5%. All of the above computations were implemented using MATLAB’s R2018a Neural Network
Toolbox (MathWorks). For the heatmaps shown in Figures 2D, 2L, and 3C, clustering was performed on the abundance levels of the
shown markers, using Spearman correlation as a distance function and average linkage. The FAP and SMA gates used to identify
different fibroblast subsets in Figure S1P were estimated based on Costa et al. (2018).

Clustering consensus

To address the inherent stochasticity of the used clustering algorithm, we performed an extensive comparison between different
PhenoGraph runs with different random initializations. We tested values of parameter k (number of nearest neighbors) of 30 (default
value, as recommended by the authors of PhenoGraph) and 100. For each of these values of k, we executed PhenoGraph 100 times
and computed the agreement between different assignments using the adjusted Rand index (ARI) (Hubert and Arabie, 1985), a stan-
dard metric of similarity between individual clustering runs. The ARI was computed between any two clustering assignments to quan-
tify the probability that a pair of cells were assigned to the same cluster (independently of cluster label) in both runs, while additionally
adjusting for chance. An ARI of 1 indicates identical cluster outcomes, whereas values close to zero indicate random assignments.
For the epithelial cells, the runs with k = 30 had a mean ARI of 0.63, and the runs with k = 100 had a mean ARl of 0.81. Examination of all
pairwise agreements (Figure S3A) showed a few outliers. Without these outliers, the mean ARl was approximately 0.85. For the rest of
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the analysis, we selected the clustering with the highest mean ARI as the most representative. The ARI computations were imple-
mented in Python using the module metrics in the package scikit-learn.

Quantification of phenotypic abnormality

To quantify how patterns found in tumor cells deviate from “normal” mammary cells, we used a novelty detection method based on
autoencoders. Autoencoders are a class of ANNs that attempt to reconstruct their input by initially transforming the data to a lower-
dimensional representation via an encoding function, and then reconstruct the input from the compressed representation using a
decoding function. Due to the compression, the reconstruction is by definition lossy. Thus, the model learns to capture the most
prominent features and interdependencies that minimize information loss. We created an undercomplete, dense autoencoder
network and used as input a data matrix X, where the rows corresponded to the pool of cells from juxta-tumoral tissue samples,
and the columns to the 27 protein channels considered. The network consisted of five layers of the following sizes: 27, 10, 2, 10,
and 27. The dataset was randomly split into training and validation (70%) and test (30%) sets, and the data was scaled to [0,1].
We used the Rectified Linear Unit (ReLU) as a transfer function between all layers, apart from the output layer where a softmax
function was used to compress the output to the same dynamic range as the input. To evaluate the performance of the reconstruc-
tion, we used a mean squared error (MSE) as a loss function:

m m

MSE:% ;x,- —Xi2 =% ;x, - 9(f(X),

where m denotes the training samples, g : =9w, w, the encoding functions, and f : =f,, ,, the decoding functions. We employed Adam
(Kingma and Ba, 2015) as an optimizer with a batch size of 256; training was terminated upon convergence with an early stopping cri-
terion of ten epochs with no significant decrease in the validation loss function (the maximum number of epochs was set to 500). The
trained network was able to create a reconstruction with high agreement with the real input with a median test set MSE of 0.007. The
model was implemented in Python using the neural network API Keras with a TensorFlow backend. Once the network was trained, we
fed it with the equivalent tumor single-cell data and quantified MSE for each tumor cell. Since the autoencoder was trained to recon-
struct patterns found in juxta-tumoral tissue-derived cells, high values of MSE indicate strong deviations from normal. The median MSE
for each tumor served as a measure of tumor phenotypic abnormality from the average juxta-tumoral tissue. We detected known
normal luminal and basal cell phenotypes in our non-cancerous mammary gland controls (Figure 3D) and observed a strong phenotypic
overlap between juxta-tumoral tissue and mammoplasty tissue (Figures 3B, 3C, and 4N), therefore we are confident that the non-
cancerous juxta-tumoral tissue can be used as a “close-to-normal” control for comparisons with tumor. We did not use the four mam-
moplasty samples for training the autoencoder to determine tumor cell phenotypic abnormality, because not enough mammoplasty
tissue-derived cells were measured and the mammoplasty samples contained very few basal cells.

Tumor individuality
To assess tumor individuality, we devised a graph-based approach based on k-nearest neighbor (k-NN) classification. We started
with i=1,...,n single cells that originated from c=1, ..., C samples. Each cell was described by a multidimensional data vector x;
that contains the protein measurements, and its sample ID Y. Initially, a k-NN graph was constructed, where each cell was connected
to the k = 100 nearest neighbors as computed using the Euclidean distance in the high-dimensional space. The probability that a cell
originated from sample ¢ was equal to the sample’s frequency in the dataset:

Ny_¢

W. = .
n

Then, for each cell i, we retrieved its k = 100 nearest neighbors (b;) and their sample IDs (Y},) and computed the posterior probability
that cell i originated from sample ¢ by assessing the neighbors’ votes, weighted by the priors:

Zfeb-WCYbf =C
plc|x) = = e
I Zieb,WC

The cell was assigned to the sample with the highest posterior (i.e., argmaxp(c | x;)), which was the sample “voted” by the majority of
C
its neighbors. Last, for all cells from the same sample, we computed the mean of all posterior probabilities:
Zx,- | Yi:cp(C [ i)

nn:c

This step simply averaged the results so that we saw sample-to-sample probabilities and not cell-to-sample probabilities, and it
resulted in a cxc matrix, expressing similarities between samples based on patterns of neighboring cells in the graph. Values
on the diagonal of this matrix expressed how “self-contained” each sample was in the graph and are referred to as the tumor
individuality score. Values close to 1 indicate that the sample is localized within an isolated region of the graph, and smaller values
indicate that the sample is intermixed with cells from other samples.
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Chord diagram
Pairwise correlations between clusters were visualized as chord diagrams in R using the circlize package (Gu et al., 2014). Links are
shown for all cluster pairs with p < 0.01 using Spearman correlation.

Tumor grouping

To group the samples based on shared patterns in their ecosystem, we clustered the frequencies per sample of all epithelial and
immune clusters. The population frequencies quantify to which extent each sample belongs to the different clusters and, as such,
can be seen as a probability distribution across all populations that sum to 1. For this reason, we employed the Jensen-Shannon
divergence (JSD) as an appropriate method of measuring the similarity between probability distributions. Here P, Q denotes the
probability density of samples p, q over all populations. The JSD between samples p, q is defined as follows:

1 1
JSD(P|| Q) ZEDKL(P M) +§DKL(Q I M)
where M:% (P+Q) and Dy, is the Kullback-Leibler (KL) divergence:

P,
D (P Q)= ZP,-Iog a

In contrast to the KL divergence, the JSD is symmetric and bounded between 0 and 1. To cluster the samples and populations, we
used a hierarchical biclustering algorithm. Similarities between samples based on their cluster assignments were computed using the
JSD, similarities between clusters were computed using a cosine distance metric, and an average linkage was used for both rows and
columns. To derive sample groups from the resulting dendrogram, we used a distance cutoff of 0.16. To identify the populations
responsible for the grouping, we used a feature selection/classification approach based on random forests (Breiman, 2001). For
each group considered, we created a dataset that included all samples belonging to the group (class 1) and an equal number of
samples from all other groups (class 0). We fitted a random forest classifier with 1000 trees; in all cases, we were able to separate
the classes with reasonable accuracy. To identify how relevant each population was to the separation, we derived the feature
importance of all populations from the ensemble of trees. All methods were implemented in Python using the packages seaborn
(clustermap), scipy (hierarchy), and scikit-learn (decomposition, RandomForestClassifier).

DATA AND SOFTWARE AVAILABILITY

The mass cytometry data (.fcs files) and immunofluorescence images generated in this study are deposited in Mendeley Data
(https://doi.org/10.17632/gb83sywsjc.1).
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Figure S1. Cell Type Identification for a Single-Cell Atlas of Breast Cancer, Related to Figure 1

(A) Antibody staining strategy. (B) Viable cell frequencies of mammoplasty (M), juxta-tumoral (JT), and tumor (T) samples. (C) Gating strategy used to isolate live,
non-apoptotic cells without gadolinium background staining. (D) Correlation of the intensity of measured markers in cell lines between barcoding plates.
(E) Correlation of live cell and immune cell frequency of the same tumor samples between staining panels. (F and G) Correlations between principal
components and F) marker abundances and G) possible experimental confounders. (H) Histograms showing the expression of ERa, PRB, and HER2 in breast
cancer cell lines, single tumors, and cells from all tumors combined. (I and J) Comparison of the percentages of receptor-positive cells in tumors to pathological
receptor status. (K) Gate for Ki-67* cells. (L) Spearman correlation of the percentages of Ki-67* cells determined by immunohistochemistry versus mass
cytometry. (M) Heatmap showing normalized marker expression for the cell phenotype PhenoGraph clusters. (N) t-SNE plot colored by cluster. (O) Gating
strategy to identify fibroblast subsets based on FAP and SMA. (P) Fibroblast subset frequencies in mammoplasty (M), juxta-tumoral (JT), and tumor (T) tissues
(left) and by tumor subtype (right).
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Figure S2. Immune Cell Phenotyping in Breast Tumor and Non-Tumor Tissue, Related to Figure 2
(A) Gate for immune cells. (B) t-SNE plots of normalized expression of markers used to identify the main immune cell types among 40,000 representative immune
cells of all samples. (C) t-SNE plot of immune cells colored by cluster. (D) Heatmap of normalized marker expression for 27 clusters. NK cells, natural killer cells;
pDCs, plasmacytoid dendritic cells. (E) Diffusion maps showing the CD4* and CD8" T cell clusters as a phenotypic continuum. T-regs were omitted. (F-I) PD-1*
T cell frequencies in F) juxta-tumoral and tumor samples, G) ER* and ER™ tumors, H) juxta-tumoral tissue and tumors by subtype, and I) tumors by grade. (J) T cell
cluster frequencies in tumors by grade. (K-N) PD-L1* TAM frequencies in K) juxta-tumoral and tumor samples, L) ER" and ER™ tumors, M) juxta-tumoral
tissue and tumors by subtype, and N) tumors by grade. (O) Myeloid cluster frequencies in tumors by grade. Wilcoxon rank-sum test was used for statistical

analysis. * p < 0.05, ™ p < 0.01, ™ p < 0.001.
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Figure S3. In-Depth Analysis of Breast Tumor Cell Phenotypes, Related to Figure 3

(A) Adjusted Rand index (ARI) values for 100 independent PhenoGraph runs using k = 100. Each boxplot corresponds to the distribution of the ARI between each
run and all other runs. (B and C) t-SNE plots of epithelial cells colored by B) cluster and C) cluster group as defined by hierarchical clustering. (D) Biaxial plots
showing luminal progenitor (LP, blue), luminal differentiated (L, green), and basal cells (B, red). (E) Expression of K8, K18, K7, K5, K14, ER«, and Ki-67 in clusters
Ep31 (top) and Ep39 (bottom) of juxta-tumoral tissue-derived cells. (F) Histograms showing the expression of epithelial markers in tumor-derived cells by cluster
group. (G) Expression of Ki-67 and EpCAM in tumor-derived cells by cluster group. (H) Percentages of K14*, K5*, K7+, K8*, and K18* cells in juxta-tumoral and
tumor samples by subtype. (l) Percentage of cells with EMT phenotype in tumors by subtype. (J and K) Percentage of Ki-67* cells in juxta-tumoral and tumor
samples by J) subtype and K) grade. Wilcoxon rank-sum test was used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure S4. Phenotypic Abnormality and Individuality of Tumor and Non-tumor Tissue Samples, Related to Figure 4
(A) Computation of phenotypic abnormality scores using an autoencoder trained with juxta-tumoral tissue-derived “normal-like” cells. Tumor phenotypic
abnormality represents the median Mean Squared Error of all cells of a tumor. (B) Barplot of the phenotypic abnormality scores of mammoplasty and juxta-
tumoral tissues and stacked histogram of the frequencies of cells per epithelial cluster group per sample. (C) Phenotypic abnormality scores for mammoplasty
(M), juxta-tumoral (JT), and tumor (T) samples. (D) Computation of tumor individuality scores using a k-nearest neighbor graph, where cells of all tumors are
grouped based on their phenotype. (E) Tumor individuality scores by grade and subtype. (F) Tumor individuality scores by lymph node status and distant
metastasis. (G) Diagram of epithelial clusters that are dominant (D, > 50% of all cells of a sample) or tumor specific (T). (H) Cluster frequency map showing tumors
for which two areas of the same tumor were sampled. Wilcoxon rank-sum test was used for statistical analysis. * p < 0.05, ** p < 0.01, ** p < 0.001.
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Figure S5. The Importance of Tumor and Immune Cell Phenotypes for Tumor Grouping, Related to Figure 5

(A and B) Biaxial plot of the first two principal components of the analysis shown in Figure 5B. A) Dots represent tumor samples colored by group. B) Dots
represent tumor samples colored by subtype (top) and grade (bottom). (C-E) The importance of epithelial, T cell, and myeloid clusters for predicting whether
tumors belong to group C) Tu1, D) Tu2, or E) Tu3 using random forest classification.
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(legend on next page)



Figure S6. In-Depth Analysis of Relationships in the Tumor Ecosystem, Related to Figure 6

(A) Frequencies of selected T cell clusters for juxta-tumoral and tumor samples. (B) Chord diagrams of the relationships between T cell, myeloid, and epithelial
clusters in tumors and matched juxta-tumoral tissue for 41 patients (p < 0.001). (C) Frequencies of selected clusters that differed in correlation between tumor
and juxta-tumoral tissue. (D) Absolute number of correlations between clusters for juxta-tumoral (JT) and tumor (T) tissue and table of the fold change between JT
and T tissue. (E) Frequency of T cell and TAM phenotypes associated with immunosuppression for TIG1-3. (F) Pseudo-brightfield images of EpCAM and pan
cytokeratin on tumor tissue. Rectangles highlight the areas shown at higher magnification in Figure 6E. Scale bar, 50 um. Spearman correlation and Wilcoxon
rank-sum test were used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001.



	A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer
	Introduction
	Results
	A Single-Cell Proteomic Atlas of Breast Cancer Ecosystems
	The Immune Landscape of Breast Cancer
	Breast Tumors Are Enriched for Immunosuppressive Macrophage Phenotypes
	Tumor Epithelial Cells Are Heterogeneous and Phenotypically Abnormal
	Phenotypic Abnormalities and Tumor Individuality Are Linked to Features of Poor Prognosis
	Tumor Ecosystem-Based Classification Reveals Distinct Groups and Multiple Tumor Singletons
	Breast Tumors and Their Immunoenvironment Are Interwoven Entities, and Both Are Important for Classification

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Clinical samples
	Cell lines

	Method Details
	Tissue preparation
	Mass-tag cellular barcoding
	Antibodies and antibody labeling
	Antibody staining and cell volume quantification
	Gadolinium contamination test
	Immunofluorescence imaging

	Quantification and Statistical Analysis
	Mass cytometry data preprocessing
	Dimensionality reduction and clustering
	Exploration of batch effects
	Epithelial cell selection and immune cell type selection
	Clustering consensus
	Quantification of phenotypic abnormality
	Tumor individuality
	Chord diagram
	Tumor grouping

	Data and Software Availability





